版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届安徽池州市东至二中高二数学第一学期期末学业水平测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知数列满足,(且),若恒成立,则M的最小值是()A.2 B.C. D.32.已知等比数列的公比q为整数,且,,则()A.2 B.3C.-2 D.-33.已知实数,满足约束条件则的最大值为()A.10 B.8C.4 D.204.考试停课复习期间,小王同学计划将一天中的7节课全部用来复习4门不同的考试科目,每门科目复习1或2节课,则不同的复习安排方法有()种A.360 B.630C.2520 D.151205.设函数在R上可导,其导函数为,且函数的图像如题(8)图所示,则下列结论中一定成立的是A.函数有极大值和极小值B.函数有极大值和极小值C.函数有极大值和极小值D.函数有极大值和极小值6.下列命题中正确的是()A.若为真命题,则为真命题B.在中“”是“”的充分必要条件C.命题“若,则或”的逆否命题是“若或,则”D.命题,使得,则,使得7.设P是抛物线上的一个动点,F为抛物线的焦点.若,则的最小值为()A. B.C.4 D.58.设等差数列的前项和为,若,则的值为()A.28 B.39C.56 D.1179.已知点是椭圆的左右焦点,椭圆上存在不同两点使得,则椭圆的离心率的取值范围是()A. B.C. D.10.已知数列是等比数列,,是函数的两个不同零点,则()A.16 B.C.14 D.11.美学四大构件是:史诗、音乐、造型(绘画、建筑等)和数学.素描是学习绘画的必要一步,它包括明暗素描和结构素描,而学习几何体结构素描是学习素描最重要的一步.某同学在画切面圆柱体(用与圆柱底面不平行的平面去截圆柱,底面与截面之间的部分叫做切面圆柱体,原圆柱的母线被截面所截剩余的部分称为切面圆柱体的母线)的过程中,发现“切面”是一个椭圆,若切面圆柱体的最长母线与最短母线所确定的平面截切面圆柱体得到的截面图形是有一个底角为60度的直角梯形,则该椭圆的离心率为()A. B.C. D.12.如图是函数的导函数的图象,下列说法正确的是()A.函数在上是增函数B.函数在上是减函数C.是函数的极小值点D.是函数的极大值点二、填空题:本题共4小题,每小题5分,共20分。13.在等差数列中,,公差,则_________14.椭圆的长轴长为______15.已知点,是椭圆内的两个点,M是椭圆上的动点,则的最大值为______16.已知长方体的棱,则异面直线与所成角的大小是________________.(结果用反三角函数值表示)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)冠状病毒是一个大型病毒家族,已知可引起感冒以及中东呼吸综合征(MERS)和严重急性呼吸综合征(SARS)等较严重疾病.而今年出现的新型冠状病毒(nCoV)是以前从未在人体中发现的冠状病毒新毒株.人感染了新型冠状病毒后常见体征有呼吸道症状、发热、咳嗽、气促和呼吸困难等.在较严重病例中,感染可导致肺炎、严重急性呼吸综合征、肾衰竭,甚至死亡.应国务院要求,黑龙江某医院选派医生参加援鄂医疗,该院呼吸内科有3名男医生,2名女医生,其中李亮(男)为科室主任;该院病毒感染科有2名男医生,2名女医生,其中张雅(女)为科室主任,现在院方决定从两科室中共选4人参加援鄂医疗(最后结果用数字表达)(1)若至多有1名主任参加,有多少种派法?(2)若呼吸内科至少2名医生参加,有多少种派法?(3)若至少有1名主任参加,且有女医生参加,有多少种派法?18.(12分)设函数(1)求函数的单调区间;(2)若有两个零点,,求的取值范围,并证明:19.(12分)如图,在直三棱柱ABC-A1B1C1中,底面ABC是等边三角形,D是AC的中点.(1)证明:AB1//面BC1D;(2)若AA1=AB,求二面角B1-AC-C1的余弦值.20.(12分)已知是等差数列的前n项和,且,(1)求数列的通项公式;(2)令,求数列的前n项和21.(12分)已知椭圆的方程为,双曲线的左、右焦点分别是的左、右顶点,而的左、右顶点分别是的左、右焦点(1)求双曲线的方程;(2)若直线与双曲线恒有两个不同的交点和,且(其中为原点),求的取值范围22.(10分)已知△ABC的内角A,B,C的对边分别是a,b,c,且.(1)求角C的大小;(2)若,求△ABC面积的最大值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据,(且),利用累加法求得,再根据恒成立求解.【详解】因为数列满足,,(且)所以,,,,因为恒成立,所以,则M的最小值是,故选:C2、A【解析】由等比数列的性质有,结合已知求出基本量,再由即可得答案.【详解】因为,,且q为整数,所以,,即q=2.所以.故选:A3、A【解析】根据约束条件作出可行域,再将目标函数表示的一簇直线画出向可行域平移即可求解.【详解】作出可行域,如图所示转化为,令则,作出直线并平移使它经过可行域点,经过时,,解得,所以此时取得最大值,即有最大值,即故选:A.4、C【解析】,先安排复习节的科目,然后安排其余科目,由此计算出不同的复习安排方法数.【详解】第步,门科目选门,安排节课,方法数有种,第步,安排其余科目,每门科目节课,方法数有种,所以不同的复习安排方法有种.故选:C5、D【解析】则函数增;则函数减;则函数减;则函数增;选D.【考点定位】判断函数的单调性一般利用导函数的符号,当导函数大于0则函数递增,当导函数小于0则函数递减6、B【解析】A选项,当一真一假时也满足条件,但不满足为真命题;B选项,可以使用正弦定理和大边对大角,大角对大边进行证明;C选项,利用逆否命题的定义进行判断,D选项,特称命题的否定,把存在改为任意,把结论否定,故可判断D选项.【详解】若为真命题,则可能均为真,或一真一假,则可能为真命题,也可能为假命题,故A错误;在中,由正弦定理得:,若,则,从而,同理,若,则由正弦定理得,,所以,故在中“”是“”的充分必要条件,B正确;命题“若,则或”的逆否命题是“若且,则”,故C错误;命题,使得,则,使得,故D错误.故选:B7、C【解析】作出图形,过点作抛物线准线的垂线,由抛物线的定义得,从而得出,再由、、三点共线时,取最小值得解.【详解】,所以在抛物线的内部,过点作抛物线准线的垂线,由抛物线的定义得,,当且仅当、、三点共线时,等号成立,因此,的最小值为.故选:C.8、B【解析】由已知结合等差数列的求和公式及等差数列的性质即可求解.【详解】因为等差数列中,,则.故选:B.9、C【解析】先设点,利用向量关系得到两点坐标之间的关系,再结合点在椭圆上,代入方程,消去即得,根据题意,构建的齐次式,解不等式即得结果.【详解】设,由得,,,即,由在椭圆上,故,即,消去得,,根据椭圆上点满足,又两点不同,可知,整理得,故,故.故选:C.【点睛】关键点点睛:圆锥曲线中离心率的计算,关键是根据题中条件,结合曲线性质,找到一组等量关系(齐次式),进而求解离心率或范围.10、B【解析】由题意得到,根据等比数列的性质得到,化简,即可求解.【详解】由,是函数的两个不同零点,可得,根据等比数列的性质,可得则.故选:B.11、A【解析】设圆柱的底面半径为,由题意知,,椭圆的长轴长,短轴长为,可以求出的值,即可得离心率.【详解】设圆柱的底面半径为,依题意知,最长母线与最短母线所在截面如图所示从而因此在椭圆中长轴长,短轴长,,故选:A【点睛】本题主要考查了椭圆的定义和椭圆离心力的求解,属于基础题.12、A【解析】根据图象,结合导函数的正负性、极值的定义逐一判断即可.【详解】由图象可知,当时,;当时,,在上单调递增,在上单调递减,可知B错误,A正确;是极大值点,没有极小值,和不是函数的极值点,可知C,D错误故选:A二、填空题:本题共4小题,每小题5分,共20分。13、15【解析】由等差数列通项公式直接可得.【详解】.故答案为:1514、4【解析】把椭圆方程化成标准形式直接计算作答.【详解】椭圆方程化为:,令椭圆长半轴长为a,则,解得,所以椭圆的长轴长为4.故答案为:415、##【解析】结合椭圆的定义求得正确答案.【详解】依题意,椭圆方程为,所以,所以是椭圆的右焦点,设左焦点为,根据椭圆的定义可知,,所以的最大值为.故答案为:16、【解析】建立空间直角坐标系,求出异面直线与的方向向量,再求出两向量的夹角,进而可得异面直线与所成角的大小【详解】解:建立如图所示的空间直角坐标系:在长方体中,,,,,,,,,,异面直线与所成角的大小是故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)105种(2)105种(3)87种【解析】(1)至多有1名主任参加,包括两种情况:一种是无主任参加,另一种是只有1名主任参加,利用分类计数原理可得结果;(2)呼吸内科至少2名医生参加,分三种情况:第一种是呼吸内科2名医生参加,第二种呼吸内科3名医生参加,第三种呼吸内科4名医生参加,然后利用分类计数原理可得结果;(3)由于张雅既是主任,也是女医生.属于特殊元素,优先考虑,分有张雅和无张雅两种情况求解即可.【详解】(1)直接法:若无主任,若只有1名主任,共105种,间接法:(2)直接法:,间接法:(3)张雅既是主任,也是女医生.属于特殊元素,优先考虑,所以以是否有张雅来分类第一类:若有张雅,第二类:若无张雅,则李亮必定去,共87种【点睛】此题考查了分步和分类计数原理,正确分步和分类是解决此题的关键,属于中档题.18、(1)答案见详解(2),证明见解析【解析】(1)求导得,,分类讨论参数a的范围即可判断单调区间;(2)设,,联立整理得,构造得,构造函数,结合导数判断单调性,进而得证.小问1详解】由,,可得,当时,,所以在上单调递增;当时,令,得,令,得所以在单调递减,在单调递增;【小问2详解】证明:因为函数有两个零点,由(1)得,此时的递增区间为,递减区间为,有极小值.所以,可得,所以.由(1)可得的极小值点为,则不妨设.设,,则则,即,整理得,所以,设,则,所以在上单调递减,所以,所以,即.19、(1)证明见解析(2)【解析】(1),连接,证明,再根据线面平行的判定定理即可得证;(2)说明平面,取的中点F,连接,以D为原点,分别以的方向为x,y,z轴的正方向,建立如图所示的空间直角坐标系,利用向量法即可得出答案.【小问1详解】证明:记,连接,由直棱柱的性质可知四边形是矩形,则E为的中点.因为D是的中点,所以,又平面平面,所以平面;【小问2详解】因为底面是等边三角形,D是的中点,所以,由直棱柱的性质可知平面平面,平面平面,面,所以平面,取的中点F,连接,则两两垂直,故以D为原点,分别以的方向为x,y,z轴的正方向,建立如图所示的空间直角坐标系,设,则,从而,设平面的法向量为,则,令x=2,得,同理平面的一个法向量为,则cosm由图可知二面角的平面角为锐角,所以二面角B1-AC-C1的余弦值为.20、(1)(2)【解析】(1)设等差数列的首项、公差,由列出关于首项、公差的方程组,解方程组可得与的值,从而可得数列的通项公式;(2)由(1)可知,利用裂项相消法可求数列的前n项和.小问1详解】依题意:设等差数列的首项为,公差为,则解得所以数列的通项公式为【小问2详解】由(1)可知因为,所以,所以.21、(1);(2)【解析】(1)求出椭圆的焦点和顶点,即得双曲线的顶点和焦点,从而易求得标准方程;(2)将代入,得由直线与双曲线交于不同的两点,得的取值范围,设,由韦达定理得则代入可求得的范围【详解】(1)设双曲线的方程为,则,再由,得故的方程为(2)将代入,得由直线与双曲线交于不同的两点,得①设则又,得,,即,解得②由①②得<k2<1,故的取值范围【点睛】本题考查双曲线的标准方程,考查直线与双曲线相交中的范围问题.应注意:(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围(2)利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个参数之间的等量关系(3)利用隐含的不等关系建
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 浙教版五年级上册数学第一单元 小数的意义与加减法 测试卷及参考答案【培优】
- 学校婚礼课程设计
- 北师大版四年级下册数学第一单元 小数的意义和加减法 测试卷及参考答案1套
- 幼儿园延伸室外课程设计
- 幼儿大气压课程设计
- 2024至2030年中国荧光增白剂KCB行业投资前景及策略咨询研究报告
- 2024至2030年中国汽车控制线缆行业投资前景及策略咨询研究报告
- DB37T 3500-2019 花生逆境生产技术规程
- 2024至2030年中国书写台灯行业投资前景及策略咨询研究报告
- 2024年中国面筋市场调查研究报告
- 2024年中国稀土集团招聘笔试参考题库附带答案详解
- 建筑缺陷智能诊断技术
- 煤矿井下设备安装工程专项方案
- 《改善前后对比图》课件
- 多元化宣教方式提高健康教育的有效性
- 全文逐条解读公职人员政务处分法
- 林木分子标记辅助育种
- 《品保QC培训资料》课件
- 《观光园艺》课件
- 2023年创建智慧校园工作总结
- 国开电大《人文英语3》一平台机考真题(第十三套)
评论
0/150
提交评论