2025届天津南开中学数学高二上期末调研试题含解析_第1页
2025届天津南开中学数学高二上期末调研试题含解析_第2页
2025届天津南开中学数学高二上期末调研试题含解析_第3页
2025届天津南开中学数学高二上期末调研试题含解析_第4页
2025届天津南开中学数学高二上期末调研试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届天津南开中学数学高二上期末调研试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.椭圆C:的焦点在x轴上,其离心率为则椭圆C的长轴长为()A.2 B.C.4 D.82.已知函数,,若对任意的,,都有成立,则实数的取值范围是()A. B.C. D.3.抛物线的焦点到双曲线的渐近线的距离是()A. B.C.1 D.4.“”是“曲线为焦点在轴上的椭圆”的A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件5.设F是双曲线的左焦点,,P是双曲线右支上的动点,则的最小值为()A.5 B.C. D.96.已知为原点,点,以为直径的圆的方程为()A. B.C. D.7.已知椭圆的中心为,一个焦点为,在上,若是正三角形,则的离心率为()A. B.C. D.8.《镜花缘》是清代文人李汝珍创作的长篇小说,书中有这样一个情节:一座楼阁到处挂满了五彩缤纷的大小灯球,灯球有两种,一种是大灯下缀2个小灯,另一种是大灯下缀4个小灯,大灯共360个,小灯共1200个.若在这座楼阁的灯球中,随机选取一个灯球,则这个灯球是大灯下缀4个小灯的概率为A. B.C. D.9.已知集合A={1,a,b},B={a2,a,ab},若A=B,则a2021+b2020=()A.-1 B.0C.1 D.210.设,则是的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件11.数列满足,且,则的值为()A.2 B.1C. D.-112.已知{an}是以10为首项,-3为公差的等差数列,则当{an}的前n项和Sn,取得最大值时,n=()A.3 B.4C.5 D.6二、填空题:本题共4小题,每小题5分,共20分。13.已知等差数列是首项为的递增数列,若,,则满足条件的数列的一个通项公式为______14.已知数列中,,,则_______.15.过直线上一动点P作圆的两条切线,切点分别为A,B,则四边形PACB面积的最小值为______16.已知正项数列的前n项和为,且,则__________,满足不等式的最大整数为__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,四边形为矩形,,,为的中点,与交于点,平面.(1)若,求与所成角的余弦值;(2)若,求直线与平面所成角的正弦值.18.(12分)已知直线:,直线:.(1)若,求与的距离;(2)若,求与的交点的坐标.19.(12分)已知各项为正数的等比数列中,,.(1)求数列的通项公式;(2)设,求数列的前n项和.20.(12分)设:实数满足,:实数满足.(1)若,且为真,求实数的取值范围;(2)若是的充分不必要条件,求实数的取值范围.21.(12分)如图,在梯形中,,四边形为矩形,且平面,.(1)求证:;(2)点在线段(不含端点)上运动,设直线与平面所成角为,求的取值范围.22.(10分)已知抛物线:的焦点为,点在上,点在的内侧,且的最小值为.(1)求的方程;(2)为坐标原点,点A在y轴正半轴上,点B,C为E上两个不同的点,其中B点在第四象限,且AB,互相垂直平分,求四边形AOBC的面积.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据椭圆的离心率,即可求出,进而求出长轴长.【详解】由椭圆的性质可知,椭圆的离心率为,则,即所以椭圆C的长轴长为故选:C.【点睛】本题主要考查了椭圆的几何性质,属于基础题.2、B【解析】根据题意,将问题转化为对任意的,,利用导数求得的最大值,再分离参数,构造函数,利用导数求其最大值,即可求得参数的取值范围.【详解】由题可知:对任意的,,都有恒成立,故可得对任意的,;又,则,故在单调递减,在单调递增,又,,则当时,,.对任意的,,即,恒成立.也即,不妨令,则,故在单调递增,在单调递减.故,则只需.故选:B.3、B【解析】先确定抛物线的焦点坐标,和双曲线的渐近线方程,再由点到直线的距离公式即可求出结果.【详解】因为抛物线的焦点坐标为,双曲线的渐近线方程为,由点到直线的距离公式可得.故选:B4、C【解析】∵“”⇒“方程表示焦点在轴上的椭圆”,“方程表示焦点在轴上的椭圆”⇒“”,∴“”是“方程表示焦点在轴上的椭圆”的充要条件,故选C.5、B【解析】由双曲线的的定义可得,于是将问题转化为求的最小值,由得出答案.【详解】设双曲线的由焦点为,且点A在双曲线的两支之间.由双曲线的定义可得,即所以当且仅当三点共线时,取得等号.故选:B6、A【解析】求圆的圆心和半径,根据圆的标准方程即可求解﹒【详解】由题知圆心为,半径,∴圆方程为﹒故选:A﹒7、D【解析】根据是正三角形可得的坐标,代入方程后可求离心率.【详解】不失一般性,可设椭圆的方程为:,为半焦距,为右焦点,因为且,故,故,,整理得到,故,故选:D.8、B【解析】设大灯下缀2个小灯为个,大灯下缀4个小灯有个,根据题意求得,再由古典概型及其概率的公式,即可求解【详解】设大灯下缀2个小灯为个,大灯下缀4个小灯有个,根据题意可得,解得,则灯球的总数为个,故这个灯球是大灯下缀4个小灯的概率为,故选B【点睛】本题主要考查了古典概型及其概率的计算,其中解答中根据题意列出方程组,求得两种灯球的数量是解答的关键,着重考查了运算与求解能力,属于基础题9、A【解析】根据A=B,可得两集合元素全部相等,分别求得和ab=1两种情况下,a,b的取值,分析讨论,即可得答案.【详解】因为A=B,若,解得,当时,不满足互异性,舍去,当时,A={1,-1,b},B={1,-1,-b},因为A=B,所以,解得,所以;若ab=1,则,所以,若,解得或1,都不满足题意,舍去,若,解得,不满足互异性,舍去,故选:A【点睛】本题考查两集合相等的概念,在集合相等问题中由一个条件求出参数后需进行代入检验,检验是否满足互异性、题设条件等,属基础题.10、B【解析】,,所以是必要不充分条件,故选B.考点:1.指、对数函数的性质;2.充分条件与必要条件.11、D【解析】根据数列的递推关系式,求得数列的周期性,结合周期性得到,即可求解.【详解】解:由题意,数列满足,且,可得,可得数列是以三项为周期的周期数列,所以.故选:D.12、B【解析】由题可得当时,,当时,,即得.【详解】∵{an}是以10为首项,-3为公差的等差数列,∴,故当时,,当时,,故时,取得最大值故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、,答案不唯一【解析】由,,可得,进而解得,然后写出通项公式即可.【详解】设数列的公差为d,由题可得,因为,,所以有,解得,只要公差d满足即可,然后根据等差数列的通项公式写出即可,我们可以取,此时.故答案为:,答案不唯一.14、【解析】根据递推公式一一计算即可;【详解】解:因为,所以,,,故答案为:15、【解析】当圆心与点的距离最小时,切线长,最小,则四边形的面积最小,此时是点到已知直线的垂线段.然后利用点到直线的距离公式求出圆心到直线的距离,再结合弦长公式和面积公式进行计算即可.【详解】解:根据题意可知:当圆心与点的距离最小时,切线长,最小,则四边形的面积最小,此时是点到已知直线的垂线段.圆心到直线的距离为四边形面积的最小值为故答案为:16、①.##②.【解析】由得到,即可得到数列是首项为1,公差为1的等差数列,从而求出,再根据求出,令,利用裂项相消法求出,即可求出的取值范围,从而得解;【详解】解:由,令,得,,解得;当时,,即因此,数列是首项为1,公差为1的等差数列,,即所以,令,所以,所以,则最大整数为;故答案为:;;三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)以为原点,、所在的直线为、轴,以过点垂直于面的直线为轴,建立空间直角坐标系,利用空间向量法可求得与所成角的余弦值;(2)计算出平面的法向量,利用空间向量法可求得直线与平面所成角的正弦值.【小问1详解】解:如图,以为原点,、所在的直线为、轴,以过点垂直于面的直线为轴,建立空间直角坐标系,,,则,则,故,因为平面,平面,则,若,则,故、、、,则,,.因此,若,则与所成角的余弦值为.【小问2详解】解:若,则、,,,,设平面的法向量为,则,取,可得,,所以直线与平面所成角的正弦值为.18、(1).(2).【解析】分析:(1)先根据求出k的值,再利用平行线间的距离公式求与的距离.(2)先根据求出k的值,再解方程组得与的交点的坐标.详解:(1)若,则由,即,解得或.当时,直线:,直线:,两直线重合,不符合,故舍去;当时,直线:,直线:,所以.(2)若,则由,得.所以两直线方程为:,:,联立方程组,解得,所以与的交点的坐标为.点睛:(1)本题主要考查直线的位置关系和距离的计算,意在考查学生对这些知识的掌握水平和计算能力.(2)直线与直线平行,则且两直线不重合.直线与直线垂直,则.19、(1);(2)【解析】(1)根据条件求出即可;(2),然后利用等差数列的求和公式求出答案即可.【详解】(1)且,,(2)20、(1)(2)【解析】(1)首先分别求出、为真时参数的取值范围,再由为真,取并集即可;(2)首先解一元二次不等式,依题意是的必要不充分条件,则可推出,而不能推出,即可得到不等式组,解得即可;【小问1详解】解:当时,,即,解得,即为真时,实数的取值范围为实数满足,即,解得:,即为真时,实数的取值范围为因,所以,即;【小问2详解】解:由,即,所以,因为是的充分不必要条件,所以是的必要不充分条件,则可推出,而不能推出,则,解得;21、(1)证明见解析(2)【解析】(1)过作,垂足为,利用正余弦定理可证,再利用线线垂足证明线面垂直,进而可得证;(2)以为坐标原点,分别以,,所在直线为,,轴建立空间直角坐标系,利用坐标法求线面夹角的正弦值.【小问1详解】证明:由已知可得四边形是等腰梯形,过作,垂足为,则,在中,,则,可得,在中,由余弦定理可得,,则,,又平面,平面,,,,平面,平面,又为矩形,,则平面,而平面,;【小问2详解】平面,且,以为坐标原点,分别以,,所在直线为,,轴建立空间直角坐标系,则,,,,,设,则,又,设平面的法向量为,由,取,得,又,,,,则.22、(1)(2)【解析】(1)根据题意,结合抛物线定

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论