广东省龙城高级中学2025届数学高二上期末考试试题含解析_第1页
广东省龙城高级中学2025届数学高二上期末考试试题含解析_第2页
广东省龙城高级中学2025届数学高二上期末考试试题含解析_第3页
广东省龙城高级中学2025届数学高二上期末考试试题含解析_第4页
广东省龙城高级中学2025届数学高二上期末考试试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省龙城高级中学2025届数学高二上期末考试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若直线的方向向量为,平面的法向量为,则()A. B.C. D.与相交但不垂直2.已知直线l1:mx-2y+1=0,l2:x-(m-1)y-1=0,则“m=2”是“l1平行于l2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm,如果不计容器的厚度,则球的体积为A. B.C. D.4.已知直四棱柱的棱长均为,则直线与侧面所成角的正切值为()A. B.C. D.5.直线,若的倾斜角为60°,则的斜率为()A. B.C. D.6.若平面的一个法向量为,点,,,,到平面的距离为()A.1 B.2C.3 D.47.已知椭圆及以下3个函数:①;②;③,其中函数图象能等分该椭圆面积的函数个数有()A.0个 B.1个C.2个 D.3个8.已知空间四边形,其对角线、,、分别是边、的中点,点在线段上,且使,用向量,表示向量是A. B.C. D.9.已知直线和直线互相垂直,则等于()A.2 B.C.0 D.10.设,向量,,,且,,则()A. B.C.3 D.411.已知,,点为圆上任意一点,设,则的最大值为()A. B.C. D.12.设是双曲线的一个焦点,,是的两个顶点,上存在一点,使得与以为直径的圆相切于,且是线段的中点,则的渐近线方程为A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知数列前n项和为,且.(1)证明:是等比数列,并求的通项公式;(2)在①;②;③这三个条件中任选一个补充在下面横线上,并加以解答.已知数列满足___________,求的前n项和.注:如果选择多个方案分别解答,按第一个方案解答计分.14.已知函数在R上连续且可导,为偶函数且,其导函数满足,则不等式的解集为___.15.已知斜率为1的直线经过椭圆的左焦点,且与椭圆交于,两点,若椭圆上存在点,使得的重心恰好是坐标原点,则椭圆的离心率______.16.已知曲线,则以下结论正确的是______.①曲线C关于点对称;②曲线C关于y轴对称;③曲线C被x轴所截得的弦长为2;④曲线C上的点到原点距离都不超过2.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆上的点到左、右焦点、的距离之和为4,且右顶点A到右焦点的距离为1.(1)求椭圆的方程;(2)直线与椭圆交于不同两点,,记的面积为,当时求的值.18.(12分)已知数列的前项和为,且.数列是等比数列,,(1)求,的通项公式;(2)求数列的前项和19.(12分)已知为数列的前项和,且.(1)求的通项公式;(2)若,求的前项和.20.(12分)已知命题:,在下面①②中任选一个作为:,使为真命题,求出实数a取值范围.①关于x的方程有两个不等正根;②.(若选①、选②都给出解答,只按第一个解答计分.)21.(12分)已知圆C的圆心在直线上,且经过点和(1)求圆C的标准方程;(2)若过点的直线l与圆C交于A,B两点,且,求直线l的方程22.(10分)设数列是公比为q的等比数列,其前n项和为(1)若,,求数列的前n项和;(2)若,,成等差数列,求q的值并证明:存在互不相同的正整数m,n,p,使得,,成等差数列;(3)若存在正整数,使得数列,,…,在删去以后按原来的顺序所得到的数列是等差数列,求所有数对所构成的集合,

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】通过判断直线的方向向量与平面的法向量的关系,可得结论【详解】因为,,所以,所以∥,因为直线的方向向量为,平面的法向量为,所以,故选:B2、C【解析】利用两直线平行的等价条件求得m,再结合充分必要条件进行判断即可.【详解】由直线l1平行于l2得-m(m-1)=1×(-2),得m=2或m=-1,经验证,当m=-1时,直线l1与l2重合,舍去,所以“m=2”是“l1平行于l2”的充要条件,故选C.【点睛】本题考查两直线平行的条件,准确计算是关键,注意充分必要条件的判断是基础题3、A【解析】根据题意可求出正方体的上底面与球相交所得截面圆的半径为4cm,再根据截面圆半径,球的半径以及球心距的关系,即可求出球的半径,从而得到球的体积【详解】设球的半径为cm,根据已知条件知,正方体的上底面与球相交所得截面圆的半径为4cm,球心到截面圆的距离为cm,所以由,得,所以球的体积为故选:A【点睛】本题主要考查球的体积公式的应用,以及球的结构特征的应用,属于基础题4、D【解析】根据题意把直线与侧面所成角的正切值转化为在直角三角形中的正切值,即可求出答案.【详解】由题意可知直四棱柱如下图所示:取的中点设为点,连接,在直四棱柱中,面,面,,在四边形中,,,故且.面,面,面,.故直线与侧面所成角的正切值为.故选:D.5、D【解析】直线,斜率乘积为,斜线斜率等于倾斜角的正切值.【详解】,,所以.故选:D.6、B【解析】求出,点A到平面的距离:,由此能求出结果【详解】解:,,,,∴为平面的一条斜线,且∴点到平面的距离:故选:B.7、C【解析】由椭圆的几何性质可得椭圆的图像关于原点对称,因为函数,函数为奇函数,其图像关于原点对称,则①②满足题意,对于函数在轴右侧时,,只有时,,即函数在轴右侧的图像显然不能等分椭圆在轴右侧的图像的面积,又函数为偶函数,其图像关于轴对称,则函数在轴左侧的图像显然也不能等分椭圆在轴左侧的图像的面积,即函数的图像不能等分该椭圆面积,得解.【详解】解:因为椭圆的图像关于原点对称,对于①,函数为奇函数,其图像关于原点对称,即可知的图象能等分该椭圆面积;对于②,函数为奇函数,其图像关于原点对称,即可知的图象能等分该椭圆面积;对于③,对于函数在轴右侧时,,只有时,,即函数在轴右侧的图像(如图)显然不能等分椭圆在轴右侧的图像的面积,又函数为偶函数,其图像关于轴对称,则函数在轴左侧的图像显然也不能等分椭圆在轴左侧的图像的面积,即函数的图像不能等分该椭圆面积,即函数图象能等分该椭圆面积的函数个数有2个,故选C.【点睛】本题考查了椭圆的几何性质、函数的奇偶性及函数的对称性,重点考查了函数的性质,属基础题.8、C【解析】根据所给的图形和一组基底,从起点出发,把不是基底中的向量,用是基底的向量来表示,就可以得到结论【详解】解:故选:【点睛】本题考查向量的基本定理及其意义,解题时注意方法,即从要表示的向量的起点出发,沿着空间图形的棱走到终点,若出现不是基底中的向量的情况,再重复这个过程,属于基础题9、D【解析】利用直线垂直系数之间的关系即可得出.【详解】解:直线和直线互相垂直,则,解得:.故选:D.10、C【解析】根据空间向量垂直与平行的坐标表示,求得的值,得到向量,进而求得,得到答案.【详解】由题意,向量,,,因为,可得,解得,即,又因为,可得,解得,即,可得,所以.故选:C.11、C【解析】根据题意可设,再根据,求出,再利用三角函数的性质即可得出答案.【详解】解:由点为圆上任意一点,可设,则,由,得,所以,则,则,其中,所以当时,取得最大值为22.故选:C.12、C【解析】根据图形的几何特性转化成双曲线的之间的关系求解.【详解】设另一焦点为,连接,由于是圆的切线,则,且,又是的中点,则是的中位线,则,且,由双曲线定义可知,由勾股定理知,,,即,渐近线方程为,所以渐近线方程为故选C.【点睛】本题考查双曲线的简单的几何性质,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、(1)证明见解析,;(2)答案见解析.【解析】(1)利用得出的递推关系,变形后可证明是等比数列,由等比数列通项公式得,然后再除以得到新数列是等差数列,从而可求得;(2)选①,直接求出,用错位相减法求和;选②,求出,用分组(并项)求和法求和;选③,求出,用裂项相消法求和【详解】解:(1)当时,因为,所以,两式相减得,.所以.当时,因为,所以,又,故,于是,所以是以4为首项2为公比的等比数列.所以,两边除以得,.又,所以是以2为首项1为公差的等差数列.所以,即.(2)若选①:,即.因为,所以.两式相减得,所以.若选②:,即.所以.若选③:,即.所以.【点睛】本题考查求等差数列、等比数列的通项公式,错位相减法求和.数列求和的常用方法:设数列是等差数列,是等比数列,(1)公式法:等差数列或等比数列的求和直接应用公式求和;(2)错位相减法:数列的前项和应用错位相减法;(3)裂项相消法;数列(为常数,)的前项和用裂项相消法;(4)分组(并项)求和法:数列用分组求和法,如果数列中的项出现正负相间等特征时可能用并项求和法;(5)倒序相加法:满足(为常数)的数列,需用倒序相加法求和14、【解析】由已知条件可得图象关于对称,在上递增,在上递减,然后分四种情况讨论求解即可【详解】因为为偶函数,所以的图象关于轴对称,所以的图象关于对称,因为,所以当时,,当时,,所以在上递增,在上递减,由,得,或,或,或,解得,或,或,或,综上,,所以等式的解集为故答案为:15、【解析】设点,,坐标分别为,则根据题意有,分别将点,,的坐标代入椭圆方程得,然后联立直线与椭圆方程,利用韦达定理得到和的值,代入得到关于的齐次式,然后解出离心率.【详解】设,,坐标分别为,因为的重心恰好是坐标原点,则,则,代入椭圆方程可得,其中,所以……①因为直线的斜率为,且过左焦点,则的方程为:,联立方程消去可得:,所以,……②所以……③,将②③代入①得,从而.故答案为:【点睛】本题考查椭圆的离心率求解问题,难度较大.解答时,注意,,三点坐标之间的关系,注意韦达定理在解题中的运用.16、②④【解析】将x换成,将y换成,若方程不变则关于原点对称;将x换成,曲线的方程不变则关于y轴对称;令通过解方程即可求得被x轴所截得的弦长;利用基本不等式即可判断出曲线C上y轴右侧的点到原点距离是否不超过2,根据曲线C关于y轴对称,即可判断出曲线C上的点到原点距离是否都不超过2.【详解】对于①,将x换成,将y换成,方程改变,则曲线C关于点不对称,故①错误;对于②,将x换成,曲线的方程不变,则曲线C关于y轴对称,故②正确;对于③,令得,,解得,即曲线C与x轴的交点为和,则曲线C被x轴所截得的弦长为,故③错误;对于④,当时,,可得,当且仅当时取等号,即,则,即曲线C上y轴右侧的点到原点的距离都不超过2,此曲线关于y轴对称,即曲线C上y轴左侧的点到原点的距离也不超过2,故④正确;故答案为:②④.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据题意得到,,再根据求解即可.(2)首先设,,再根据求解即可.【小问1详解】由题意,,因为右顶点到右焦点的距离为,即,所以,则,所以椭圆的标准方程为.【小问2详解】设,,且根据椭圆的对称性得,联立方程组,整理得,解得,因为的面积为3,可得,解得.18、(1),(2)【解析】(1)利用求出通项公式,根据已知求出公比即可得出的通项公式;(2)利用错位相减法可求解.【小问1详解】因为数列的前项和为,且,当时,,当时,,满足,所以,设等比数列的公比为,因为,,所以,解得,所以;【小问2详解】因为,,则,两式相减得,所以.19、(1)(2)【解析】(1)由与的关系结合等比数列的定义得出的通项公式;(2)由(1)得出,再由错位相减法得出的前项和.【小问1详解】因为,所以当时,,所以.当时,,两式相减,得,所以,所以,所以是以1为首项,2为公比的等比数列,所以.【小问2详解】由(1)得,所以,两边同乘以,得,两式相减,得,所以.20、答案见解析【解析】根据题意,分析、为真时的取值范围,又由复合命题真假的判断方法可得、都是真命题,据此分析可得答案.【详解】解:选①时由知在上恒成立,∴,即又由q:关于x的方程有两个不等正根,知解得,由为真命题知,解得.实数a的取值范围.选②时由知在上恒成立,∴,即又由,知在上恒成立,∴,又,当且仅当时取“=”号,∴,由为真命题知,解得.实数a的取值范围.21、(1)(2)或【解析】(1)点和的中垂线经过圆心,两直线联立方程得圆心坐标,再利用两点间距离公式求解半径.(2)已知弦长,求解直线方程,分类讨论斜率是否存在.小问1详解】点和的中点为,,所以中垂线的,利用点斜式得方程为,联立方程得圆心坐标为,所以圆C的标准方程为.【小问2详解】当过点的直线l斜率不存在时,直线方程为,此时弦长,符合题意.当过点的直线l斜率存在时,设直线方程为,化简得,弦心距,所以,解得,所以直线方程为.综上所述直线方程为或.22、(1)(2),证明见解析.(3)不存在,【解析】(1)数列为首项为公差为的等差数列,利用等差数列的求和公式即可得出结果;(2),,成等差数列,则+=2,根据等比数列求和公式计

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论