版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届广东省揭阳市产业园高一上数学期末综合测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设集合,,则A. B.C. D.2.已知命题p:,,则()A., B.,C., D.,3.已知是偶函数,它在上是减函数.若,则的取值范围是()A. B.C. D.4.已知,,,则a,b,c的大小关系为()A. B.C. D.5.下列不等关系中正确的是()A. B.C. D.6.若,,,,则()A. B.C. D.7.已知集合,或,则()A.或 B.C. D.或8..已知集合,集合,则()A. B.C. D.9.已知定义域为的函数满足,且,若,则()A. B.C. D.10.已知直线的方程是,的方程是,则下列各图形中,正确的是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.某地街道呈现东—西、南—北向的网格状,相邻街距都为1,两街道相交的点称为格点.若以互相垂直的两条街道为坐标轴建立平面直角坐标系,根据垃圾分类要求,下述格点为垃圾回收点:,,,,,.请确定一个格点(除回收点外)___________为垃圾集中回收站,使这6个回收点沿街道到回收站之间路程的和最短.12.函数恒过定点为__________13.的单调增区间为________.14.已知扇形OAB的面积为,半径为3,则圆心角为_____15.已知函数,现有如下几个命题:①该函数为偶函数;
②是该函数的一个单调递增区间;③该函数的最小正周期为;④该函数的图像关于点对称;⑤该函数值域为.其中正确命题的编号为______16.已知非零向量、满足,,在方向上的投影为,则_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,且的图象经过点(1)求的值;(2)求在区间上的最大值;(3)若,求证:在区间内存在零点18.已知集合,(1)分别求,;(2)已知,若,求实数的取值集合19.已知,函数(1)求的定义域;(2)当时,求不等式的解集20.已知函数(1)求函数的定义域,并判断函数的奇偶性;(2)对于,不等式恒成立,求实数的取值范围21.在甲、乙两个盒子中分别装有标号为1,2,3,4的四个球,现从甲、乙两个盒子中各取出1个球,每个球被取出的可能性相等.(1)求取出的两个球上标号为相同数字的概率;(2)若两人分别从甲、乙两个盒子中各摸出一球,规定:两人谁摸出的球上标的数字大谁就获胜(若数字相同则为平局),这样规定公平吗?请说明理由.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】详解】试题分析:集合,集合,所以,故选D.考点:1、一元二次不等式;2、集合的运算.2、A【解析】直接利用全称命题的否定即可得到结论【详解】因为命题p:,,所以:,.故选:A.3、C【解析】根据偶函数的性质结合单调性可得,即可根据对数函数单调性解出不等式.【详解】由于函数是偶函数,由得,又因为函数在上是减函数,所以在上是增函数,则,即,解得.故选:C.4、D【解析】与中间值1和2比较.【详解】,,,所以故选:D.【点睛】本题考查幂与对数的大小比较,在比较对数和幂的大小时,能化为同底数的化为同底数,再利用函数的单调性比较,否则可借助中间值比较,如0,1,2等等.5、C【解析】对于A,作差变形,借助对数函数单调性判断;对于C,利用均值不等式计算即可判断;对于B,D,根据不等式的性质及对数函数单调性判断作答.【详解】对于A,,而函数在单调递增,显然,则,A不正确;对于B,因为,所以,故,B不正确;对于C,显然,,,C正确;对于D,因为,所以,即,D不正确.故选:C6、C【解析】由于,所以先由已知条件求出,的值,从而可求出答案【详解】,因为,,所以,,因为,,所以,,则故选:C【点睛】此题考查同角三角函数的关系的应用,考查两角差的余弦公式的应用,考查计算能力,属于基础题.7、A【解析】应用集合的并运算求即可.【详解】由题设,或或.故选:A8、A【解析】先将分别变形,然后根据数值的奇偶判断出的关系,由此求解出的结果.【详解】因为,所以,所以;又因为,所以,所以,又因为表示所有的奇数,表示部分奇数,所以;所以,故选:A.9、A【解析】根据,,得到求解.【详解】因为,,所以,所以,所以,所以,,故选:A10、D【解析】对于D:l1:y=ax+b,l2:y=bx-a.由l1可知a<0,b<0,对应l2也符合,二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据题意,设满足题意得格点为,这6个回收点沿街道到回收站之间路程的和为,故,再分别求和的最小值时的即可得答案.【详解】解:设满足题意得格点为,这6个回收点沿街道到回收站之间路程和为,则,令,由于其去掉绝对值为一次函数,故其最小值在区间端点值,所以代入得,所以当时,取得最小值,同理,令,代入得所以当或时,取得最小值,所以当,或时,这6个回收点沿街道到回收站之间路程的和最小,由于是一个回收点,故舍去,所以当,这6个回收点沿街道到回收站之间路程的和最小,故格点为故答案为:12、【解析】当时,,故恒过点睛:函数图象过定点问题,主要有指数函数过定点,对数函数过定点,幂函数过点,注意整体思维,整体赋值求解13、【解析】求出给定函数的定义域,由对数函数、正弦函数单调性结合复合函数单调性求解作答.【详解】依题意,,则,解得,函数中,由得,即函数在上单调递增,当时,函数在上单调递增,又函数在上单调递增,所以函数的单调增区间为.故答案为:【点睛】关键点睛:函数的单调区间是定义域的子区间,求函数的单调区间,正确求出函数的定义域是解决问题的关键.14、【解析】直接利用扇形的面积公式得到答案.【详解】故答案为:【点睛】本题考查了扇形面积的计算,属于简单题.15、②③【解析】由于为非奇非偶函数,①错误.,此时,其在上为增函数,②正确.由于,所以函数最小正周期为,③正确.由于,故④正确.当时,,故⑤错误.综上所述,正确的编号为②③.16、【解析】利用向量数量积的几何意义得出,在等式两边平方可求出的值,然后利用平面向量数量积的运算律可计算出的值.【详解】,在方向上的投影为,,,则,可得,因此,.故答案:.【点睛】本题考查平面向量数量积计算,涉及利用向量的模求数量积,同时也考查了向量数量积几何意义的应用,考查计算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)(3)证明见解析【解析】(1)将点代入解析式求解;(2)根据函数单调性求解最大值;(3)零点存在性定理证明在区间内存在零点.【小问1详解】因为函数,且的图象经过点,所以.所以.【小问2详解】因为,所以.所以在区间上单调递减.所以在区间上的最大值是.所以.所以在区间上的最大值是.【小问3详解】因为,所以.因为,,所以,又在区间上的图象是一条连续不断的曲线,由零点存在性定理可得:在区间内存在零点18、(1)(2)【解析】(1)两集合的交集为两集合的相同的元素构成的集合,两集合的并集为两集合所有的元素构成的集合;(2)由两集合的子集关系得到两集合边界值的大小关系,从而解不等式得到的取值范围试题解析:(1),(2)由可得考点:集合运算及集合的子集关系19、(1)(2)【解析】(1)根据对数函数的真数大于零得到不等式组,解得即可求出函数的定义域;(2)当时得到、即可得到与,则原不等式即为,再根据对数函数的单调性,将函数不等式转化为自变量的不等式,解得即可,需注意函数的定义域;【小问1详解】解:由题意得:,解得,因为,所以,故定义域为【小问2详解】解:因为,所以,所以,,因为,所以,即从而,解得.故不等式的解集为20、(1)的定义域为,奇函数;(2).【解析】(1)由求定义域,再利用奇偶性的定义判断其奇偶性;(2)将对于,不等式恒成立,利用对数函数的单调性转化为对于,不等式恒成立求解.【小问1详解】解:由函数,得,即,解得或,所以函数的定义域为,关于原点对称,又,所以奇函数;【小问2详解】因为对于,不等式恒成立,所以对于,不等式恒成立,所以对于,不等式恒成立,所以对于,不等式恒成立,令,则在上递增,所以,所以.21、(1)(2)这样规定公平,详见解析【解析】(1)利用列举法求得基本事件的总数,利用古典概型的概率计算公式,即可求解;(2)利用古典概型及其概率的计算公式,求得的概率,即可得到结论.【详解】由题意,设从甲、乙两个盒子中各取1个球,其数字分别为x、y.用表示抽取结果
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 购买技术合作服务合同
- 全面消杀清洁协议
- 货物买卖合同封
- 铝板材料直销协议
- 广告服务合同样式
- 装修补充合同协议
- 软件维护与运维服务合同
- 长期稳定合作材料采购合同
- 临时工与派遣公司合同
- 农产品生鲜订购合同
- 安徽省合肥市琥珀中学2023-2024学年八年级上学期期中语文试题
- 15D501 建筑物防雷设施安装
- 面向多目标优化的烟草制丝APS设计与实现
- 复变函数论与运算微积智慧树知到课后章节答案2023年下哈尔滨工业大学(威海)
- 青海利亚达化工有限公司年产6000吨高纯硼酸升级改造项目环评报告
- 小班健康《动物模仿秀》
- 5S提升管理报告
- 电力建设“五新”推广应用信息目录(试行)
- 冬至活动的主持词有哪些冬至活动主持词开场白优质
- 2023年法律文书形成性考核册答案
- 保密警示教育课
评论
0/150
提交评论