版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届甘肃省兰州市城关区兰州第一中学数学高二上期末学业质量监测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知向量,,若,则()A.1 B.C. D.22.将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有()A.60种 B.120种C.240种 D.480种3.过两点、的直线的倾斜角为,则的值为()A.或 B.C. D.4.已知直线的方向向量为,则直线l的倾斜角为()A.30° B.60°C.120° D.150°5.已知函数的图象如图所示,则不等式的解集为()A. B.C. D.6.1852年英国来华传教士伟烈亚力将《孙子算经》中“物不知数”问题解法传至欧洲,西方人称之为“中国剩余定理”.现有这样一个问题:将1到200中被3整除余1且被4整除余2的数按从小到大的顺序排成一列,构成数列,则=()A.130 B.132C.140 D.1447.已知,是双曲线的左、右焦点,点A是的左顶点,为坐标原点,以为直径的圆交的一条渐近线于、两点,以为直径的圆与轴交于两点,且平分,则双曲线的离心率为()A. B.2C. D.38.若圆上恰有2个点到直线的距离为1,则实数的取值范围为()A B.C. D.9.已知平面向量,且,向量满足,则的最小值为()A. B.C. D.10.数列满足,,,则数列的前10项和为()A.60 B.61C.62 D.6311.已知各项均为正数且单调递减的等比数列满足、、成等差数列.其前项和为,且,则()A. B.C. D.12.已知抛物线的焦点为F,直线l经过点F交抛物线C于A,B两点,交抛物浅C的准线于点P,若,则为()A.2 B.3C.4 D.6二、填空题:本题共4小题,每小题5分,共20分。13.函数的单调递减区间是___________.14.已知椭圆的右顶点为P,右焦点F与抛物线的焦点重合,的顶点与的中心O重合.若与相交于点A,B,且四边形为菱形,则的离心率为___________.15.已知双曲线的两条渐近线的夹角为,则双曲线的实轴长为____16.已知抛物线C:的焦点为F,过M(4,0)的直线交C于A、B两点,设,的面积分别为、,则的最小值为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)“既要金山银山,又要绿水青山”.滨江风景区在一个直径为100米的半圆形花园中设计一条观光线路(如图所示).在点与圆弧上的一点(不同于A,B两点)之间设计为直线段小路,在直线段小路的两侧(注意是两侧)种植绿化带;再从点到点设计为沿弧的弧形小路,在弧形小路的内侧(注意是一侧)种植绿化带(注:小路及绿化带的宽度忽略不计).(1)设(弧度),将绿化带总长度表示为的函数;(2)试确定的值,使得绿化带总长度最大.(弧度公式:,其中为弧所对的圆心角)18.(12分)已知椭圆与直线相切,点G为椭圆上任意一点,,,且的最大值为3(1)求椭圆C的标准方程;(2)设直线与椭圆C交于不同两点E,F,点O为坐标原点,且,当的面积取最大值时,求的取值范围19.(12分)如图,在平面直角坐标系中,点,,(1)求直线BC的方程;(2)记的外接圆为圆M,若直线OC被圆M截得的弦长为4,求点C的坐标20.(12分)设等比数列的前项和为,且()(1)求数列的通项公式;(2)在与之间插入个实数,使这个数依次组成公差为的等差数列,设数列的前项和为,求证:21.(12分)如图所示,在正方体中,点,,分别是,,的中点(1)证明:;(2)求直线与平面所成角的大小22.(10分)如图,一个湖的边界是圆心为的圆,湖的一侧有一条直线型公路,湖上有桥(是圆的直径).规划在公路上选两个点、,并修建两段直线型道路、.规划要求,线段、上的所有点到点的距离均不小于圆的半径.已知点到直线的距离分别为和(为垂足),测得,,(单位:百米).(1)若道路与桥垂直,求道路的长;(2)在规划要求下,点能否选在处?并说明理由.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由向量平行,先求出的值,再由模长公式求解模长.【详解】由,则,即则,所以则故选:B2、C【解析】先确定有一个项目中分配2名志愿者,其余各项目中分配1名志愿者,然后利用组合,排列,乘法原理求得.【详解】根据题意,有一个项目中分配2名志愿者,其余各项目中分配1名志愿者,可以先从5名志愿者中任选2人,组成一个小组,有种选法;然后连同其余三人,看成四个元素,四个项目看成四个不同的位置,四个不同的元素在四个不同的位置的排列方法数有4!种,根据乘法原理,完成这件事,共有种不同的分配方案,故选:C.【点睛】本题考查排列组合的应用问题,属基础题,关键是首先确定人数的分配情况,然后利用先选后排思想求解.3、D【解析】利用斜率公式可得出关于实数的等式与不等式,由此可解得实数的值.详解】由斜率公式可得,即,解得.故选:D.4、B【解析】利用直线的方向向量求出其斜率,进而求出倾斜角作答.【详解】因直线的方向向量为,则直线l的斜率,直线l的倾斜角,于是得,解得,所以直线l的倾斜角为.故选:B5、D【解析】原不等式等价于,根据的图象判断函数的单调性,可得和的解集,再分情况或解不等式即可求解.【详解】由函数的图象可知:在和上单调递增,在上单调递减,所以当时,;当时,;由可得,所以或,即或,解得:或,所以原不等式的解集为:,故选:D.6、A【解析】分析数列的特点,可知其是等差数列,写出其通项公式,进而求得结果,【详解】被3整除余1且被4整除余2的数按从小到大的顺序排成一列,这样的数构成首项为10,公差为12的等差数列,所以,故,故选:A.7、B【解析】由直径所对圆周角是直角,结合双曲线的几何性质和角平分线定义可解.【详解】由圆的性质可知,,,所以,因为,所以又因为平分,所以,由,得,所以,即所以故选:B8、A【解析】求得圆心到直线的距离,根据题意列出的不等关系式,即可求得的范围.【详解】因为圆心到直线的距离,故要满足题意,只需,解得.故选:A.9、B【解析】由题设可得,又,易知,,将问题转化为平面点线距离关系:向量的终点为圆心,1为半径的圆上的点到向量所在射线的距离最短,即可求的最小值.【详解】解:∵,而,∴,又,即,又,,∴,若,则,∴在以为圆心,1为半径的圆上,若,则,∴问题转化为求在圆上的哪一点时,使最小,又,∴当且仅当三点共线且时,最小为.故选:B.【点睛】关键点点睛:由已知确定,,构成等边三角形,即可将问题转化为圆上动点到射线的距离最短问题.10、B【解析】讨论奇偶性,应用等差、等比前n项和公式对作分组求和即可.【详解】当且为奇数时,,则,当且为偶数时,,则,∴.故选:B.11、C【解析】先根据,,成等差数列以及单调递减,求出公比,再由即可求出,再根据等比数列通项公式以及前项和公式即可求出.【详解】解:由,,成等差数列,得:,设的公比为,则,解得:或,又单调递减,,,解得:,数列的通项公式为:,.故选:C12、C【解析】由题意可知设,由可得,可求得,,根据模长公式计算即可得出结果.【详解】由题意可知,准线方程为,设,可知,,解得:,代入到抛物线方程可得:.,故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】首先对求导,可得,令,解可得答案【详解】解:由得,故的单调递减区间是故答案为:【点睛】本题考查利用导数研究函数的单调性,属于基础题.14、【解析】设抛物线的方程为得到,把代入椭圆的方程化简即得解.【详解】设抛物线的方程为.由题得,代入椭圆的方程得,所以,所以,所以因为,所以.故答案为:【点睛】方法点睛:求椭圆的离心率常用的方法有:(1)公式法(根据已知求出代入离心率的公式即得解);(2)方程法(直接由已知得到关于离心率的方程解方程即得解).要根据已知条件灵活选择方法求解.15、【解析】根据已知条件求得,由此求得实轴长.【详解】由于,双曲线的渐近线方程为,所以双曲线的渐近线与轴夹角小于,由得,实轴长故答案为:16、【解析】设直线的方程为,,与抛物线的方程联立整理得,由三角形的面积公式求得,再根据基本不等式可得答案.【详解】解:由抛物线C:得焦点,又直线交C于A、B两点,所以直线的斜率不为0,则设直线的方程为,,联立,整理得,则,又,,所以,又,当且仅当,即时取等号,所以的最小值为.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)在直角三角形中,求出,在扇形中利用弧长公式求出弧的长度,则可得函数;(2)利用导数可求得结果.【详解】(1)如图,连接在直角三角形中,所以由于则弧的长为(2)由(1)可知,令得,因为所以,当单调递增,当单调递减,所以当时,使得绿化带总长度最大.【点睛】关键点点睛:仔细审题,注意题目中的关键词“两侧”和“一侧”是解题关键.18、(1)(2)【解析】(1)设点,根据题意,得到,根据向量数量积的坐标表示,得到,根据其最小值,求出,即可得出椭圆方程;(2)设,,,联立直线与椭圆方程,根据韦达定理,由弦长公式,以及点到直线距离公式,求出的面积的最值,得到;得出点的轨迹为椭圆,且点为椭圆的左、右焦点,记,则,得到,根据对勾函数求出最值.【小问1详解】设点,由题意知,所以:,则,当时,取得最大值,即,故椭圆C的标准方程是【小问2详解】设,,,则由得,,点O到直线l的距离,对用均值不等式,则:当且仅当即,①,S取得最大值.此时,,,即,代入①式整理得,即点M的轨迹为椭圆且点,为椭圆的左、右焦点,即记,则于是:,由对勾函数的性质:当时,,且,故的取值范围为19、(1);(2).【解析】(1)延长CB交x轴于点N,根据给定条件求出即可计算作答.(2)利用待定系数法求出圆M的方程,再由给定弦长确定C点位置,推理计算得解.【小问1详解】延长CB交x轴于点N,如图,因,则,又,则有,又,于是得,则直线BC的倾斜角为120°,直线BC的斜率,因此,,即所以直线BC的方程为.【小问2详解】依题意,设圆M的方程为,由(1)得:,解得,于是得圆M的方程为,即,圆心,半径,因直线OC被圆M所截的弦长为4,则直线OC过圆心,其方程为,由解得,即,所以点C的坐标是.20、(1)(2)见解析【解析】(1)由两式相减得,所以()因为等比,且,所以,所以故(2)由题设得,所以,所以,则,所以21、(1)证明见解析(2)【解析】(1)连接,可得,从而可证四边形是平行四边形,从而证明结论.(2)以为坐标原点,分别以,,所在直线为,,轴,建立空间直角坐标系,利用向量法求解线面角.【小问1详解】如图,连接在正方体中,且因为,分别是,的中点,所以且又因为是的中点,所以,且,所以四边形是平行四边形,所以【小问2详解】以为坐标原点,分别以,,所在直线为,,轴,建立如图所示的空间直角坐标系设,则,,,,,,设为平面的法向量因为,,,所以令,得设直线与平面所成角为,则因为,所以直线与平面所成角的大小为22、(1)15(百米)(2)点选在处不满足规划要求,理由见解析【解析】(1)建立适当的坐标系,得圆及直线的方程,进而得解.(2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 美术班教学合同范例
- 2024至2030年薄壁水管螺纹接头项目投资价值分析报告
- 2024至2030年机械铜涡轮铜套项目投资价值分析报告
- 医疗器材设备销售合同范例
- 2024至2030年内开内倒窗项目投资价值分析报告
- 2024至2030年亚克力棒材项目投资价值分析报告
- 2024年离婚后居住安排及赡养费协议2篇
- 2024年电动舞台升降幕项目可行性研究报告
- 2024年注塑机液压系统项目可行性研究报告
- 2024年母线绝缘板项目可行性研究报告
- 山西省晋中市各县区乡镇行政村村庄村名居民村民委员会明细
- 养老机构护理管理制度与规范
- DB31∕T 875-2015 人身损害受伤人员休息期、营养期、护理期评定准则
- 08S305-小型潜水泵选用及安装图集
- 工程监理企业各部门岗位职责
- 取暖器产品1油汀ny221218试验报告
- 国家开放大学电大《建筑制图基础》机考三套标准题库及答案3
- 雅马哈PSR-37中文说明书
- 一汽大众新员工三级安全教育(入厂级)
- 最新X公司事业部建设规划方案
- 十一学校行动纲要
评论
0/150
提交评论