江苏省南通市如东中学、栟茶中学2025届高一上数学期末调研试题含解析_第1页
江苏省南通市如东中学、栟茶中学2025届高一上数学期末调研试题含解析_第2页
江苏省南通市如东中学、栟茶中学2025届高一上数学期末调研试题含解析_第3页
江苏省南通市如东中学、栟茶中学2025届高一上数学期末调研试题含解析_第4页
江苏省南通市如东中学、栟茶中学2025届高一上数学期末调研试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省南通市如东中学、栟茶中学2025届高一上数学期末调研试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若函数的值域为,则实数的取值范围是()A. B.C. D.2.函数的部分图象是()A. B.C. D.3.函数的图像大致为()A. B.C. D.4.若,则是第()象限角A.一 B.二C.三 D.四5.若是圆的弦,的中点是(-1,2),则直线的方程是()A. B.C. D.6.函数(且)图象恒过定点,若点在直线上,其中,则的最大值为A. B.C. D.7.已知函数.若,,,则的大小关系为()A. B.C. D.8.设函数若关于的方程有四个不同的解且则的取值范围是A. B.C. D.9.已知函数f(x)(x∈R)满足f(2-x)=-f(x),若函数y=与f(x)图象的交点为(x1,y1),(x2,y2),…,(xm,ym)(m∈N*),则x1+x2+x3+…+xm的值为()A.4m B.2mC.m D.010.如图,PO是三棱锥P-ABC底面ABC的垂线,垂足为O①若PA⊥BC,PB⊥AC,则点O是△ABC的垂心;②若PA=PB=PC,则点O是△ABC的外心;③若∠PAB=∠PAC,∠PBA=∠PBC,则点O是△ABC的内心;④过点P分别做边AB,BC,AC的垂线,垂足分别为E,F,G,若PE=PF=PG,则点O是△ABC的重心以上推断正确的个数是()A.1 B.2C.3 D.4二、填空题:本大题共6小题,每小题5分,共30分。11.已知某扇形的周长是,面积为,则该扇形的圆心角的弧度数是______.12.函数的值域为_____________13.已知幂函数(是常数)的图象经过点,那么________14.已知为的外心,,,,且;当时,______;当时,_______.15.半径为2cm,圆心角为的扇形面积为.16.当时,函数取得最大值,则___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图甲,直角梯形中,,,为的中点,在上,且,现沿把四边形折起得到空间几何体,如图乙.在图乙中求证:(1)平面平面;(2)平面平面.18.近来,国内多个城市纷纷加码布局“夜经济”,以满足不同层次的多元消费,并拉动就业、带动创业,进而提升区域经济发展活力.某夜市的一位工艺品售卖者,通过对每天销售情况的调查发现:该工艺品在过去的一个月内(以30天计),每件的销售价格(单位:元)与时间x(单位:天)的函数关系近似满足,日销售量(单位:件)与时间x(单位:天)的部分数据如下表所示:x10152025305055605550(1)给出以下四个函数模型:①;②;③;④请你根据上表中的数据,从中选择你认为最合适的一种函数模型来描述日销售量与时间x的变化关系,并求出该函数的解析式;(2)设该工艺品的日销售收入为(单位:元),求的最小值19.求解下列问题:(1)角的终边经过点,且,求的值(2)已知,,求的值20.如图,弹簧挂着的小球做上下振动,它在(单位:)时相对于平衡位置(静止时的位置)的高度(单位:)由关系式确定,其中,,.在一次振动中,小球从最高点运动至最低点所用时间为.且最高点与最低点间的距离为(1)求小球相对平衡位置高度(单位:)和时间(单位:)之间的函数关系;(2)小球在内经过最高点的次数恰为50次,求的取值范围21.已知集合,(1)若,求,;(2)若,求实数的取值范围

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】因为函数的值域为,所以可以取到所有非负数,即的最小值非正.【详解】因为,且的值域为,所以,解得.故选:C.2、C【解析】首先判断函数的奇偶性,即可排除AD,又,即可排除B.【详解】因为,定义域为R,关于原点对称,又,故函数为奇函数,图象关于原点对称,故排除AD;又,故排除B.故选:C.3、B【解析】分析:通过研究函数奇偶性以及单调性,确定函数图像.详解:为奇函数,舍去A,舍去D;,所以舍去C;因此选B.点睛:有关函数图象识别问题的常见题型及解题思路(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复.4、C【解析】由终边位置可得结果.【详解】,终边落在第三象限,为第三象限角.故选:C.5、B【解析】由题意知,直线PQ过点A(-1,2),且和直线OA垂直,故其方程为:y﹣2=(x+1),整理得x-2y+5=0故答案为B6、D【解析】∵由得,∴函数(且)的图像恒过定点,∵点在直线上,∴,∵,当且仅当,即时取等号,∴,∴最大值为,故选D【名师点睛】在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误7、C【解析】由函数的奇偶性结合单调性即可比较大小.【详解】根据题意,f(x)=x2﹣2|x|+2019=f(﹣x),则函数f(x)为偶函数,则a=f(﹣log25)=f(log25),当x≥0,f(x)=x2﹣2x+2019=(x﹣1)2+2018,在(0,1)上为减函数,在(1,+∞)上为增函数;又由1<20.8<2<log25,则.则有b<a<c;故选C【点睛】本题考查函数的奇偶性与单调性的判断以及性质的应用,属于基础题.8、A【解析】画出函数的图像,通过观察的图像与的交点,利用对称性求得与的关系,根据对数函数的性质得到与的关系.再利用函数的单调性求得题目所求式子的取值范围.【详解】画出函数的图像如下图所示,根据对称性可知,和关于对称,故.由于,故.令,解得,所以.,由于函数在区间为减函数,故,故选A.【点睛】本小题主要考查函数的对称性,考查对数函数的性质,以及函数图像的交点问题,还考查了利用函数的单调性求函数的值域的方法,属于中档题.9、C【解析】由条件可得,即有关于点对称,又的图象关于点对称,即有,为交点,即有,也为交点,计算即可得到所求和【详解】解:函数满足,即为,可得关于点对称,函数的图象关于点对称,即有,为交点,即有,也为交点,,为交点,即有,也为交点,则有.故选.【点睛】本题考查抽象函数的求和及对称性的运用,属于中档题.10、C【解析】①由题意得出AO⊥BC,BO⊥BC,点O是△ABC的垂心;②若PA=PB=PC,则AO=BO=CO,点O是△ABC的外心;③由题意得出AO是∠BAC的平分线,BO是∠ABC的平分线,O是△ABC的内心;④若PE=PF=PG,则OE=OF=OG,点O是△ABC的内心【详解】对于①,PO⊥底面ABC,∴PO⊥BC,又PA⊥BC,∴BC⊥平面PAO,∴AO⊥BC;同理PB⊥AC,得出BO⊥BC,∴点O是△ABC的垂心,①正确;对于②,若PA=PB=PC,由此推出Rt△PAO≌Rt△PBO≌Rt△PCO,∴AO=BO=CO,点O是△ABC的外心,②正确;对于③,若∠PAB=∠PAC,且PO⊥底面ABC,则AO是∠BAC的平分线,同理∠PBA=∠PBC时BO是∠ABC平分线,∴点O是△ABC的内心,③正确;对于④,过点P分别做边AB,BC,AC的垂线,垂足分别为E,F,G,若PE=PF=PG,则OE=OF=OG,点O是△ABC的内心,④错误综上,正确的命题个数是3故选C【点睛】本题主要考查了空间中的直线与平面的垂直关系应用问题,是中档题二、填空题:本大题共6小题,每小题5分,共30分。11、2【解析】由扇形的周长和面积,可求出扇形的半径及弧长,进而可求出该扇形的圆心角.【详解】设扇形的半径为,所对弧长为,则有,解得,故.故答案为:2.【点睛】本题考查扇形面积公式、弧长公式的应用,考查学生的计算求解能力,属于基础题.12、【解析】利用二倍角余弦公式可得令,结合二次函数的图象与性质得到结果.【详解】由题意得:令,则∵在上单调递减,∴的值域为:故答案为:【点睛】本题给出含有三角函数式的“类二次”函数,求函数的值域.着重考查了三角函数的最值和二次函数在闭区间上的值域等知识,属于中档题13、【解析】首先代入函数解析式求出,即可得到函数解析式,再代入求出函数值即可;【详解】解:因为幂函数(是常数)的图象经过点,所以,所以,所以,所以;故答案:14、(1).(2).【解析】(1)由可得出为的中点,可知为外接圆的直径,利用锐角三角函数的定义可求出;(2)推导出外心的数量积性质,,由题意得出关于、和的方程组,求出的值,再利用向量夹角的余弦公式可求出的值.【详解】当时,由可得,,所以,为外接圆的直径,则,此时;如下图所示:取的中点,连接,则,所,,同理可得.所以,,整理得,解得,,,因此,.故答案为:;.【点睛】本题考查三角的外心的向量数量积性质的应用,解题的关键就是推导出,,并以此建立方程组求解,计算量大,属于难题.15、【解析】求出扇形的弧长,利用扇形面积公式求解即可.【详解】因为半径为,圆心角为的扇形,弧长为,所以扇形面积为:故答案为.【点睛】本题考查扇形的面积公式的应用,考查计算能力,属于基础题.16、##【解析】由辅助角公式,正弦函数的性质求出,,再根据两角和的正切和公式,诱导公式求.【详解】(其中,),当时,函数取得最大值∴,,即,,所以,.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)证明见解析【解析】(1)证明出平面,平面,利用面面垂直的判定定理可证得结论成立;(2)证明出平面,可得出平面,利用面面垂直的判定定理可证得结论成立.【小问1详解】证明:翻折前,,翻折后,则有,,因为平面,平面,平面,因为平面,平面,平面,因为,因此,平面平面.【小问2详解】证明:翻折前,在梯形中,,,则,,则,翻折后,对应地,,,因为,所以,平面,,则平面,平面,因此,平面平面.18、(1)选择模型②:,;(2)441.【解析】(1)根据表格数据的变化趋势选择函数模型,再将数据代入解析式求参数值,即可得解析式.(2)由题设及(1)所得解析式求的解析式,再由分段函数的性质,结合分式型函数最值的求法求的最小值【小问1详解】由表格数据知,当时间x变换时,先增后减,而①;③;④都是单调函数,所以选择模型②:,由,可得,解得,由,解得,,所以日销售量与时间x的变化的关系式为【小问2详解】由(2)知:,所以,即,当,时,由基本不等式,可得,当且仅当时,即时等号成立,当,时,为减函数,所以函数的最小值为,综上,当时,函数取得最小值44119、(1)或(2)【解析】(1)结合三角函数的定义求得,由此求得.(2)通过平方的方法求得,由此求得.【小问1详解】依题意或.所以或,所以或.【小问2详解】由于,所以,,由于,所以,,,所以,所以,所以,,所以20、(1),;(2)【解析】(1)首先根据题意得到,,从而得到,(2)根据题意,当时,小球第一次到达最高点,从而得到,再根据周期为,即可得到.【详解】(1)因为小球振动过程中最高点与最低点的距离为,所以因为在一次振动中,小球从最高点运动至最低点所用时间为,所以周期为2,即,所以所以,(2)由题意,当时,小球第

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论