版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省行唐县第三中学2025届数学高二上期末调研试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.f(x),g(x)分别是定义在R上的奇函数和偶函数,当x<0时,f(x)g(x)+f(x)g(x)<0且f(﹣1)=0则不等式f(x)g(x)<0的解集为A.(﹣1,0)∪(1,+∞) B.(﹣1,0)∪(0,1)C.(﹣∞,﹣1)∪(1,+∞) D.(﹣∞,﹣1)∪(0,1)2.总体有编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取3个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第3个个体的编号为()7816657208026314070243699728019832049234493582003623486969387481A.08 B.02C.63 D.143.为调查学生的课外阅读情况,学校从高二年级四个班的182人中随机抽取30人了解情况,若用系统抽样的方法,则抽样的间隔和随机剔除的个数分别为()A.6,2 B.2,3C.2,60 D.60,24.在等比数列中,若是函数的极值点,则的值是()A. B.C. D.5.如图所示,在三棱锥中,E,F分别是AB,BC的中点,则等于()A. B.C. D.6.下列命题错误的是()A.命题“若,则”的逆否命题为“若,则”B.命题“若,则”的否命题为“若,则”C.若命题p:或;命题q:或,则是的必要不充分条件D.“”是“”的充分不必要条件7.已知是两个数1,9的等比中项,则圆锥曲线的离心率为()A.或 B.或C. D.8.复数的虚部为()A. B.C. D.9.设数列的前项和为,若,,,则、、、中,最大的是()A. B.C. D.10.变量,之间有如下对应数据:3456713111087已知变量与呈线性相关关系,且回归方程为,则的值是()A.2.3 B.2.5C.17.1 D.17.311.已知点是点在坐标平面内的射影,则点的坐标为()A. B.C. D.12.设,分别为具有公共焦点与椭圆和双曲线的离心率,为两曲线的一个公共点,且满足,则的值为A. B.1C.2 D.不确定二、填空题:本题共4小题,每小题5分,共20分。13.圆锥的轴截面是边长为2的等边三角形,为底面中心,为的中点,动点在圆锥底面内(包括圆周).若,则点形成的轨迹的长度为______14.已知抛物线的顶点为O,焦点为F,动点B在C上,若点B,O,F构成一个斜三角形,则______15.在数列中,,,记是数列的前项和,则=___.16.已知椭圆的右顶点为A,上顶点为B,且直线l与椭圆交于C,D两点,若直线l直线AB,设直线AC,BD的斜率分别为,,则的值为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,底面ABCD为矩形,侧面PAD是正三角形,平面平面ABCD,M是PD的中点(1)证明:平面PCD;(2)若PB与底面ABCD所成角的正切值为,求二面角的正弦值18.(12分)已知在时有极值0.(1)求常数,的值;(2)求在区间上的最值.19.(12分)已知椭圆的左、右焦点分别为,,且椭圆过点,离心率,为坐标原点,过且不平行于坐标轴的动直线与有两个交点,,线段的中点为.(1)求的标准方程;(2)记直线斜率为,直线的斜率为,证明:为定值;(3)轴上是否存在点,使得为等边三角形?若存在,求出点的坐标;若不存在,请说明理由.20.(12分)已知等差数列的前项的和为,,.(1)求数列的通项公式;(2)设,记数列的前项和,求使得恒成立时的最小正整数.21.(12分)已知等比数列中,,数列满足,(1)求数列的通项公式;(2)求证:数列为等差数列,并求前项和的最大值22.(10分)已知动圆过定点,且与直线相切.(1)求动圆圆心的轨迹的方程;(2)直线过点与曲线相交于两点,问:在轴上是否存在定点,使?若存在,求点坐标,若不存在,请说明理由.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】构造函数h(x)=f(x)g(x),由已知得当x<0时,h(x)<0,所以函数y=h(x)在(﹣∞,0)单调递减,又因为f(x),g(x)分别是定义在R上的奇函数和偶函数,得函数y=h(x)为R上的奇函数,所以函数y=h(x)在(0,+∞)单调递减,得到f(x)g(x)<0不等式的解集【详解】设h(x)=f(x)g(x),因为当x<0时,f(x)g(x)+f(x)g(x)<0,所以当x<0时,h(x)<0,所以函数y=h(x)在(﹣∞,0)单调递减,又因为f(x),g(x)分别是定义在R上的奇函数和偶函数,所以函数y=h(x)为R上的奇函数,所以函数y=h(x)在(0,+∞)单调递减,因为f(﹣1)=0,所以函数y=h(x)的大致图象如下:所以等式f(x)g(x)<0的解集为(﹣1,0)∪(1,+∞)故选A【点睛】本题考查导数乘法法则、导数的符号与函数单调性的关系;奇函数的单调性在对称区间上一致,属于中档题2、D【解析】由随机数表法抽样原理即可求出答案.【详解】根据题意,依次读出的数据为65(舍去),72(舍去),08,02,63(舍去),14,即第三个个体编号为14.故选:D.3、A【解析】根据系统抽样的方法即可求解.【详解】从人中抽取人,除以,商余,故抽样的间隔为,需要随机剔除人.故选:A.4、B【解析】根据导数的性质求出函数的极值点,再根据等比数列的性质进行求解即可.【详解】,当时,单调递增,当时,单调递减,当时,单调递增,所以是函数的极值点,因为,且所以,故选:B5、D【解析】根据向量的线性运算公式化简可得结果.【详解】因为E,F分别是AB,AC的中点,所以,,所以,故选:D6、C【解析】根据逆否命题的定义可判断A;根据否命题的定义可判断B;求出、,根据充分条件和必要条件的概念可以判断C;解出不等式,根据充分条件和必要条件的概念可判断D.【详解】命题“若,则”的逆否命题为“若,则”,故A正确;命题“若,则”的否命题为“若,则”,故B正确;若命题p:或;命题q:或,则:-1≤x≤1是:-2≤x≤1的充分不必要条件,故C错误;或x<1,故“”是“”的充分不必要条件,故D正确.故选:C.7、A【解析】根据题意可知,当时,根据椭圆离心率公式,即可求出结果;当时,根据双曲线离心率公式,即可求出结果.【详解】因为是两个数1,9的等比中项,所以,所以,当时,圆锥曲线,其离心率为;当时,圆锥曲线,其离心率为;综上,圆锥曲线的离心率为或.故选:A.8、D【解析】直接根据.复数的乘法运算结合复数虚部的定义即可得出答案【详解】解:,所以复数的虚部为.故选:D.9、C【解析】求出的表达式,解不等式可得结果.【详解】由已知可得,故数列为等差数列,且公差为,所以,,令可得.因此,当时,最大.故选:C.10、D【解析】将样本中心点代入回归方程后求解【详解】,,将样本中心点代入回归方程,得故选:D11、D【解析】根据空间中射影的定义即可得到答案.【详解】因为点是点在坐标平面内的射影,所以的竖坐标为0,横、纵坐标与A点的横、纵坐标相同,所以点的坐标为.故选:D12、C【解析】根据题意,设它们共同的焦距为2c、椭圆的长轴长2a、双曲线的实轴长为2m,由椭圆和双曲线的定义及勾弦定理建立关于a、c、m的方程,联解可得a2+m2=2c2,再根据离心率的定义求解【详解】由题意设焦距为2c,椭圆的长轴长2a,双曲线的实轴长为2m,设P在双曲线的右支上,由双曲线的定义得|PF1|﹣|PF2|=2m①由椭圆的定义|PF1|+|PF2|=2a②又∵,∴,可得∠F1PF2=900,故|PF1|2+|PF2|2=4c2③,①平方+②平方,得|PF1|2+|PF2|2=2a2+2m2④将④代入③,化简得a2+m2=2c2,即,可得,所以=.故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】建立空间直角坐标系设,,,,于是,,因为,所以,从而,,此为点形成的轨迹方程,其在底面圆盘内的长度为14、2【解析】画出简单示意图,令,根据抛物线定义可得,应用数形结合及B在C上,求目标式的值.【详解】如下图,令,直线为抛物线准线,轴,由抛物线定义知:,又且,所以,故,又,故.故答案为:2.【点睛】关键点点睛:应用抛物线的定义将转化为,再由三角函数的定义及点在抛物线上求值.15、930【解析】当为偶数时,,所以数列前60项中偶数项的和,当为奇数时,,因此数列是以1为首项,公差为2等差数列,前60项中奇数项的和为,所以.考点:递推数列、等差数列.16、##0.25【解析】求出点A,B坐标,设出直线l的方程,联立直线l与椭圆方程,借助韦达定理即可计算作答.【详解】依题意,点,直线AB斜率为,因直线l直线AB,则设直线l方程为:,,由消去y并整理得:,,解得,于是有或,设,则,有,因此,,所以的值为.故答案:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】(1)依题意可得,再根据面面垂直的性质得到平面,即可得到,即可得证;(2)取的中点为,连接,根据面面垂直的性质得到平面,连接,即可得到为与底面所成角,令,,利用锐角三角函数的定义求出,建立如图所示空间直角坐标系,利用空间向量法求出二面角的余弦值,即可得解;【小问1详解】解:证明:在正中,为的中点,∴∵平面平面,平面平面,且.∴平面,又∵平面∴.又∵,且,平面.∴平面【小问2详解】解:如图,取的中点为,连接,在正中,,平面平面,平面平面,∴平面,连接,则为与底面所成角,即.不妨取,,,,∴以为原点建立如图所示的空间直角坐标系,则有,,,,,,∴,设面的一个法向量为,则由令,则,又因为面,取作为面的一个法向量,设二面角为,∴,∴,因此二面角的正弦值为18、(1),;(2)最小值为0,最大值为4.【解析】(1)对求导,根据在时有极值0,得到,再求出,的值;(2)由(1)知,,然后判断的单调性,再求出的值域【详解】解:(1),由题知:联立(1)、(2)有(舍)或.当时在定义域上单调递增,故舍去;所以,,经检验,符合题意(2)当,时,故方程有根或由,得或由得,函数的单调增区间为:,,减区间为:.函数在取得极大值,在取极小值;经计算,,,,所以最小值为0,最大值为4.19、(1);(2)证明见解析;(3)不存在,理由见解析.【解析】(1)由椭圆所过点及离心率,列方程组,再求解即得;(2)设出点A,B坐标并列出它们满足的关系,利用点差法即可作答;(3)设直线的方程,联立直线与椭圆的方程,借助韦达定理求得,,再结合为等边三角形的条件即可作答.【详解】(1)显然,半焦距c有,即,则,所以椭圆的标准方程为;(2)设,,,,由(1)知,,两式相减得,即,而弦的中点,则有,所以;(3)假定存在符合要求的点P,由(1)知,设直线的方程为,由得:,则,,于是得,从而得点,,因为等边三角形,即有,,因此,,,从而得,整理得,无解,所以在y轴上不存在点,使得为等边三角形.20、(1)(2)1【解析】(1)先设设等差数列的公差为,由,列出方程组求出首项和公差即可;(2)由(1)先求出,再由裂项相消法求数列的前项和即可.【详解】解:(1)设等差数列的公差为,因为,,所以解得所以数列的通项公式为.(2)由(1)可知∴,∴,∴,∴的最小正整数为1【点睛】本题主要考查等差数列的通项公式,以及裂项相消法求数列前项和的问题,熟记公式即可,属于基础题型.21、(1);(2)证明见解析,10.【解析】(1)设出等比数列的公比q,利用给定条件列出方程求出q值即得;(2)将给定等式变形成,再推理计算即可作答.【详解】(1)设等比数列的公比为q,依题意,,而,解得,所以数列的通项公式为;(2)显然,,由得:,所以数列是以为首项,公差为-1的等差数列,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版垫资赎楼业务风险控制合同2篇
- 2024电商技术服务合同3篇
- 2024年版市区高级公寓租赁合同版B版
- 2025年度玩具OEM贴牌加工安全标准合同3篇
- 2025年房屋贷款延期合同3篇
- 二零二五年度火锅店餐饮服务承包合同范本2篇
- 二零二五年度跨境电商产业园房地产收购合同3篇
- 2024版打胶合同书
- 二零二五年度智能机器人OEM委托研发与市场拓展合同
- 西南科技大学《西方音乐史(二)》2023-2024学年第一学期期末试卷
- 2025年工程合作协议书
- 2025年山东省东营市东营区融媒体中心招聘全媒体采编播专业技术人员10人历年高频重点提升(共500题)附带答案详解
- 2025年宜宾人才限公司招聘高频重点提升(共500题)附带答案详解
- 六年级下册第四单元语文园地-语文园地四-学习任务单
- 《新闻采访写作》课程思政优秀教学案例(一等奖)
- 竣工验收程序流程图
- 清华经管工商管理硕士研究生培养计划
- 口腔科诊断证明书模板
- 管沟挖槽土方计算公式
- 国网浙江省电力公司住宅工程配电设计技术规定
- 烟花爆竹零售应急预案
评论
0/150
提交评论