版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省邵阳市洞口四中2025届高二上数学期末综合测试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若复数,则()A B.C. D.2.设村庄外围所在曲线的方程可用表示,村外一小路所在直线方程可用表示,则从村庄外围到小路的最短距离为()A. B.C. D.3.在空间直角坐标系中,点关于轴对称的点的坐标为()A. B.C. D.4.已知“”的必要不充分条件是“或”,则实数的最小值为()A. B.C. D.5.对于公差为1的等差数列,;公比为2的等比数列,,则下列说法不正确的是()A.B.C.数列为等差数列D.数列的前项和为6.圆与圆的位置关系是()A.外离 B.外切C.相交 D.内切7.函数在其定义域内可导,的图象如图所示,则导函数的图象为A. B.C. D.8.方程表示的图形是A.两个半圆 B.两个圆C.圆 D.半圆9.已知函数(其中)的部分图像如图所示,则函数的解析式为()A. B.C. D.10.在四面体中,空间的一点满足,若共面,则()A. B.C. D.11.如图,在四面体OABC中,,,,点在线段上,且,为的中点,则等于()A. B.C. D.12.直线分别与轴,轴交于A,B两点,点在圆上,则面积的取值范围是()A. B.C D.二、填空题:本题共4小题,每小题5分,共20分。13.已知圆:,圆:,则圆与圆的位置关系是______14.若点到点的距离比它到定直线的距离小1,则点满足的方程为_____________15.已知等比数列中,则q=___16.命题“若,则二元一次不等式表示直线的右上方区域(包含边界)”的条件:_________,结论:_____________,它是_________命题(填“真”或“假”).三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知:,,:,,且为真命题,求实数的取值范围.18.(12分)某中学共有名学生,其中高一年级有名学生,为了解学生的睡眠情况,用分层抽样的方法,在三个年级中抽取了名学生,依据每名学生的睡眠时间(单位:小时),绘制出了如图所示的频率分布直方图.(1)求样本中高一年级学生的人数及图中的值;(2)估计样本数据的中位数(保留两位小数);(3)估计全校睡眠时间超过个小时的学生人数.19.(12分)已知函数.(1)求函数在处的切线方程;(2)设为的导数,若方程的两根为,且,当时,不等式对任意的恒成立,求正实数的最小值.20.(12分)已知集合,.(1)当时,求AB;(2)设,,若是成立的充分不必要条件,求实数的取值范围.21.(12分)已知椭圆的离心率,过椭圆C的焦点且垂直于x轴的直线截椭圆所得到的线段的长度为1(1)求椭圆C的方程;(2)直线交椭圆C于A、B两点,若y轴上存在点P,使得是以AB为斜边的等腰直角三角形,求的面积的取值范围22.(10分)设A,B为曲线C:y=上两点,A与B的横坐标之和为4(1)求直线AB的斜率;(2)设M为曲线C上一点,C在M处的切线与直线AB平行,且AM⊥BM,求直线AB的方程
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据复数的乘法运算即可求解.【详解】由,故选:A2、B【解析】求出圆心到直线距离,减去半径即为答案.【详解】圆心到直线的距离,则从村庄外围到小路的最短距离为故选:B3、B【解析】结合已知条件,利用对称的概念即可求解.【详解】不妨设点关于轴对称的点的坐标为,则线段垂直于轴且的中点在轴,从而点关于轴对称的点的坐标为.故选:B.4、A【解析】首先解不等式得到或,根据题意得到,再解不等式组即可.【详解】,解得或,因为“”的必要不充分条件是“或”,所以.实数的最小值为.故选:A5、B【解析】由等差数列的通项公式判定选项A正确;利用等比数列的通项公式求出,即判定选项B错误;利用对数的运算和等差数列的定义判定选项C正确;利用错位相减法求和,即判定选项D正确.【详解】对于A:由条件可得,,即选项A正确;对于B:由条件可得,,即选项B错误;对于C:因为,所以,则,即数列是首项和公差均为的等差数列,即选项C正确;对于D:,设数列的前项和为,则,,上面两式相减可得,所以,即选项D正确.故选:B.6、C【解析】利用圆心距与半径的关系确定正确选项.【详解】圆的圆心为,半径为,圆的圆心为,半径为,圆心距为,,所以两圆相交.故选:C7、D【解析】分析:根据函数单调性、极值与导数的关系即可得到结论.详解:观察函数图象,从左到右单调性先单调递增,然后单调递减,最后单调递增.对应的导数符号为正,负,正.,选项D的图象正确.故选D.点睛:本题主要考查函数图象的识别和判断,函数单调性与导数符号的对应关系是解题关键.8、D【解析】其中,再两边同时平方,由此确定图形【详解】根据题意,,再两边同时平方,由此确定图形为半圆.故选:D【点睛】几何图像中要注意与方程式是一一对应,故方程的中未知数的的取值范围对应到图形中的坐标的取值范围9、B【解析】根据题图有且,结合五点法求参数,即可得的解析式.【详解】由图知:且,则,所以,则,即,又,可得,,则,,又,即有.综上,.故选:B10、D【解析】根据四点共面的向量表示,可得结果.【详解】由共面知,故选:【点睛】本题主要考查空间中四点共面的向量表示,属基础题.11、D【解析】利用空间向量的加法与减法可得出关于、、的表达式.【详解】.故选:D.12、A【解析】把求面积转化为求底边和底边上的高,高就是圆上点到直线的距离.【详解】与x,y轴的交点,分别为,,点在圆,即上,所以,圆心到直线的距离为,所以面积的最小值为,最大值为.故选:A二、填空题:本题共4小题,每小题5分,共20分。13、相交【解析】把两个圆的方程化为标准方程,分别找出两圆的圆心坐标和半径,利用两点间的距离公式求出两圆心的距离,与半径和与差的关系比较即可知两圆位置关系.【详解】化为,化为,则两圆圆心分别为:,,半径分别为:,圆心距为,,所以两圆相交.故答案为:相交.14、【解析】根据抛物线的定义可得动点的轨迹方程【详解】点到点的距离比它到直线的距离少1,所以点到点的距离与到直线的距离相等,所以其轨迹为抛物线,焦点为,准线为,所以方程为,故答案为:15、3【解析】根据等比数列的性质求得,再根据等比数列的通项公式求得答案.【详解】等比数列中,故,,所以,故答案为:316、①.②.二元一次不等式表示直线的右上方区域(包含边界)③.真【解析】由二元一次不等式的意义可解答问题.【详解】因为,二元一次不等式所表示的区域如下图所示:所以在的条件下,二元一次不等式表示直线的右上方区域(包含边界),此命题是真命题.故答案为:;二元一次不等式表示直线的右上方区域(包含边界);真三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、【解析】由,为真,可得对任意的恒成立,从而分和求出实数的取值范围,再由,,可得关于的方程有实根,则有,从而可求出实数的取值范围,然后求交集可得结果【详解】解:可化为.若:,为真,则对任意的恒成立.当时,不等式可化为,显然不恒成立,当时,有且,所以.①若:,为真,则关于的方程有实根,所以,即,所以或.②又为真命题,故,均为真命题.所以由①②可得的取值范围为.18、(1)样本中高一年级学生的人数为,;(2);(3)【解析】(1)利用分层抽样可求得样本中高一年级学生的人数,利用频率直方图中所有矩形的面积之和为可求得的值;(2)利用中位数左边的矩形面积之和为可求得中位数的值;(3)利用频率分布直方图可计算出全校睡眠时间超过个小时的学生人数.【小问1详解】解:样本中高一年级学生的人数为.,解得.【小问2详解】解:设中位数为,前两个矩形的面积之和为,前三个矩形的面积之和为,所以,则,得,故样本数据的中位数约为.【小问3详解】解:由图可知,样本数据落在的频率为,故全校睡眠时间超过个小时的学生人数约为.19、(1)(2)1【解析】(1)先求导数,根据导数的几何意义可求得切线方程;(2)将已知方程结合其两根,进行变式,求得,利用该式再将不等式变形,然后将不等式的恒成立问题变为函数的最值问题求解.【小问1详解】由题意可得,所以切点为,则切线方程为:.【小问2详解】由题意有:,则,因为分别是方程的两个根,即.两式相减,则,则不等式,可变为,两边同时除以得,,令,则在上恒成立.整理可得,在上恒成立,令,则,①当,即时,在上恒成立,则在上单调递增,又,则在上恒成立;②当,即时,当时,,则在上单调递减,则,不符合题意.综上:,所以的最小值为1.20、(1);(2).【解析】(1)由,解得范围,可得,由可得:,解得.即可得出(2)由,解得.根据是成立的必要条件,利用包含关系列不等式即可得出实数的取值范围【详解】(1)由,解得,可得:,可得:,化为:,解得,所以=.(2)q是p成立的充分不必要条件,所以集合B是集合A的真子集.由,解得,又集合A=,所以或解得0≤a≤2,即实数a的取值范围是.【点睛】本题考查了简易逻辑的判定方法、集合之间的关系、不等式的解法,考查了推理能力与计算能力,属于基础题21、(1)(2)【解析】(1)由条件可得,解出即可;(2)设,,取AB的中点,联立直线与椭圆的方程消元,算出,,然后可算出,然后由可得,然后表示出的面积可得答案.小问1详解】令,得,所以,解得,,所以椭圆C的方程:【小问2详解】设,,取AB的中点,因为为以AB为斜边的等腰直角三角形,所以且,联立得,则∴又∵,∴,且,,∴,由得,∴∴22、(1)1;(2)y=x+7【解析】(1)设A(x1,y1),B(x2,y2),直线AB的斜率k==,代入即可求得斜率;(2)由(1)中直线AB的斜率,根据导数的几何意义求得M点坐标,设直线AB的方程为y=x+m,与抛物线联立,求得根,结合弦长公式求得AB,由知,|AB|=2|MN|,从而求得参数m.【详解】解:(1)设A(x1,y1),B(x2,y2),则x1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 产品销售计划表格
- 学校除四害工作计划某年
- 八年级班级工作计划初中范文
- 独具特色甜品店创业计划书
- 有关检验工作计划
- 《无盘工作站的制作》课件
- 班级工作计划中的时间管理
- 2024车间主管的工作计划
- 公司秘书人员工作计划例文
- 《个人理财综述》课件
- 【MOOC】钻井与完井工程-西南石油大学 中国大学慕课MOOC答案
- 手术术前访视科普
- 专题04 《经典常谈》(期中热点)20题-2023-2024学年八年级语文下学期期中专题复习(深圳专用)(原卷版)
- 2024年朝阳客运资格证模拟考试
- 2023年民航东北空管局人员招聘笔试真题
- 《接触网施工》课件 5.1.2 避雷器安装
- 人教部编版《道德与法治》二年级上册第9课《这些是大家的》精美课件(第1课时)
- 人力五年规划
- 六年级语文上册 期末字词专项训练(一)(含答案)(部编版)
- 黑8台球比赛规则单选题100道及答案解析
- 防范电信诈骗安全
评论
0/150
提交评论