必刷知识点【28.1锐角三角函数】(原卷版+解析)_第1页
必刷知识点【28.1锐角三角函数】(原卷版+解析)_第2页
必刷知识点【28.1锐角三角函数】(原卷版+解析)_第3页
必刷知识点【28.1锐角三角函数】(原卷版+解析)_第4页
必刷知识点【28.1锐角三角函数】(原卷版+解析)_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九年级数学下册考点必刷练精编讲义(人教版)第28章《锐角三角函数》28.1锐角三角函数知识点01:锐角三角函数的概念如图所示,在Rt△ABC中,∠C=90°,∠A所对的边BC记为a,叫做,也叫做,∠B所对的边AC记为b,叫做,也是,直角C所对的边AB记为c,叫做.

锐角A的对边与斜边的比叫做∠A的正弦,记作sinA,即;锐角A的邻边与斜边的比叫做∠A的余弦,记作cosA,即;锐角A的对边与邻边的比叫做∠A的正切,记作tanA,即.同理;;.细节剖析:(1)正弦、余弦、正切函数是在直角三角形中定义的,反映了直角三角形边与角的关系,是两条线段的比值.角的度数确定时,其不变,角的度数变化时,也随之变化.

(2)sinA,cosA,tanA分别是一个完整的数学符号,是一个,不能写成,,

,不能理解成sin与∠A,cos与∠A,tan与∠A的乘积.书写时习惯上省略∠A的角的记号“∠”,但对三个大写字母表示成的角(如∠AEF),其正切应写成“tan∠AEF”,不能写成

“tanAEF”;另外,、、常写成、、.

(3)任何一个锐角都有相应的,不因这个角不在某个三角形中而不存在.

(4)由锐角三角函数的定义知:当角度在0°<∠A<90°间变化时,,,tanA>0.知识点02:特殊角的三角函数值利用三角函数的定义,可求出30°、45°、60°角的各三角函数值,归纳如下:锐角30°45°160°细节剖析:(1)通过该表可以方便地知道30°、45°、60°角的各三角函数值,它的另一个应用就是:如果知道了一个锐角的三角函数值,就可以求出这个,例如:若,则锐角.

(2)仔细研究表中数值的规律会发现:

、、的值依次为、、,而、、的值的顺序正好相反,、、的值依次增大,其变化规律可以总结为:

①随锐角度数的增大(或减小)而增大(或减小);

②随锐角度数的增大(或减小)而减小(或增大).

知识点03:锐角三角函数之间的关系如图所示,在Rt△ABC中,∠C=90°.

(1)互余关系:,;

(2)平方关系:;

(3)倒数关系:或;

(4)商数关系:.细节剖析:锐角三角函数之间的关系式可由推导得出,常应用在中,计算时巧用这些关系式可使运算简便.

2022-2023学年九年级数学下册考点必刷练精编讲义(人教版)第28章《锐角三角函数》28.1锐角三角函数知识点01:锐角三角函数的概念如图所示,在Rt△ABC中,∠C=90°,∠A所对的边BC记为a,叫做∠A的对边,也叫做∠B的邻边,∠B所对的边AC记为b,叫做∠B的对边,也是∠A的邻边,直角C所对的边AB记为c,叫做斜边.

锐角A的对边与斜边的比叫做∠A的正弦,记作sinA,即;锐角A的邻边与斜边的比叫做∠A的余弦,记作cosA,即;锐角A的对边与邻边的比叫做∠A的正切,记作tanA,即.同理;;.细节剖析:(1)正弦、余弦、正切函数是在直角三角形中定义的,反映了直角三角形边与角的关系,是两条线段的比值.角的度数确定时,其比值不变,角的度数变化时,比值也随之变化.

(2)sinA,cosA,tanA分别是一个完整的数学符号,是一个整体,不能写成,,

,不能理解成sin与∠A,cos与∠A,tan与∠A的乘积.书写时习惯上省略∠A的角的记号“∠”,但对三个大写字母表示成的角(如∠AEF),其正切应写成“tan∠AEF”,不能写成

“tanAEF”;另外,、、常写成、、.

(3)任何一个锐角都有相应的锐角三角函数值,不因这个角不在某个三角形中而不存在.

(4)由锐角三角函数的定义知:当角度在0°<∠A<90°间变化时,,,tanA>0.知识点02:特殊角的三角函数值利用三角函数的定义,可求出30°、45°、60°角的各三角函数值,归纳如下:锐角30°45°160°细节剖析:(1)通过该表可以方便地知道30°、45°、60°角的各三角函数值,它的另一个应用就是:如果知道了一个锐角的三角函数值,就可以求出这个锐角的度数,例如:若,则锐角.

(2)仔细研究表中数值的规律会发现:

、、的值依次为、、,而、、的值的顺序正好相反,、、的值依次增大,其变化规律可以总结为:

①正弦、正切值随锐角度数的增大(或减小)而增大(或减小);

②余弦值随锐角度数的增大(或减小)而减小(或增大).

知识点03:锐角三角函数之间的关系如图所示,在Rt△ABC中,∠C=90°.

(1)互

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论