版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页2024年枣庄市重点中学九上数学开学达标检测模拟试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)点M(﹣3,y1),N(﹣2,y2)是抛物线y=﹣(x+1)2+3上的两点,则下列大小关系正确的是()A.y1<y2<3 B.3<y1<y2 C.y2<y1<3 D.3<y2<y12、(4分)若点P(a,2)在第二象限,则a的值可以是()A. B.0 C.1 D.23、(4分)如图,△ABC中,∠C=900,∠CAB=600,AD平分∠BAC,点D到AB的距离DE=3cm,则BC等于()A.3cm B.6cm C.9cm D.12cm4、(4分)在▱ABCD中,∠C=32°,则∠A的度数为()A.148° B.128° C.138° D.32°5、(4分)用三块正多边形的木板铺地,拼在一起并相交于一点的各边完全吻合,其中两块木板的边数都是8,则第三块木板的边数应是()A.4B.5C.6D.86、(4分)反比例函数y=(2m-1),当x>0时,y随x的增大而增大,则m的值是()A.m=±1 B.小于的实数 C.-1 D.17、(4分)正方形的一个内角度数是A. B. C. D.8、(4分)如图,中,与关于点成中心对称,连接,当()时,四边形为矩形.A. B.C. D.二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)若有意义,则字母x的取值范围是.10、(4分)甲、乙两人在同一直线道路上同起点、同方向、同时出发,分别以不同的速度匀速跑步1000米,甲超出乙150米时,甲停下来等候乙,甲、乙会合后,两人分别以原来的速度继续跑向终点,先到终点的人在终点休息,在跑步的整个过程中,甲、乙两人的距离y(米)与乙出发的时间x(秒)之间的关系如图所示,则甲到终点时,乙距离终点还有_____米.11、(4分)如图,在菱形ABCD中,AB=5,对角线AC=1.若过点A作AE⊥BC,垂足为E,则AE的长为_________.12、(4分)平行四边形的一个内角平分线将对边分成3和5两个部分,则该平行四边形的周长是_____.13、(4分)分解因式:x2﹣7x=_____.三、解答题(本大题共5个小题,共48分)14、(12分)为了预防流感,某学校在休息日用药熏消毒法对教室进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y(mg)与时间t(h)成正比;药物释放完毕后,y与t之间的函数解析式为y=at(1)写出从释放药物开始,y与t之间的两个函数解析式及相应的自变量取值范围;(2)据测定,当空气中每立方米的含药量降低到0.25mg以下时,学生方可进入教室,那么药物释放开始,至少需要经过多少小时,学生才能进入教室?15、(8分)如图,在等腰直角三角形ABC中,∠ACB=90°,BE⊥CE于E,AD⊥CE于D,AD=5cm,DE=3cm.(1)求证△CBE≌△ACD(2)求线段BE的长16、(8分)2019年7月1日,《上海市生活垃圾管理条例》正式实施,生活垃圾按照“可回收物”、“有害垃圾”、“湿垃圾”、“干垃圾”的分类标准.没有垃圾分类和未指定投放到指定垃圾桶内等会被罚款和行政处罚.垃圾分类制度即将在全国范围内实施,很多商家推出售卖垃圾分类桶,某商店经销垃圾分类桶.现有如下信息:信息1:一个垃圾分类桶的售价比进价高12元;信息2:卖3个垃圾分类桶的费用可进货该垃圾分类桶4个;请根据以上信息,解答下列问题:(1)该商品的进价和售价各多少元?(2)商店平均每天卖出垃圾分类桶16个.经调查发现,若销售单价每降低1元,每天可多售出2个.为了使每天获取更大的利润,垃圾分类桶的售价为多少元时,商店每天获取的利润最大?每天的最大利润是多少?17、(10分)在中,BD是它的一条对角线,过A、C两点分别作,,E、F为垂足.(1)如图,求证:;(2)如图,连接AC,设AC、BD交于点O,若.在不添加任何辅助线的情况下,请直接写出图中的所有长度是OE长度2倍的线段.18、(10分)某商场计划购进、两种新型节能台灯共盏,这两种台灯的进价、售价如表所示:()若商场预计进货款为元,则这两种台灯各购进多少盏?()若商场规定型台灯的进货数量不超过型台灯数量的倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)直线的截距是__________.20、(4分)如图,函数y=k1x
(x>0)的图象与矩形OABC的边BC交于点D,分别过点A,D作AF∥DE,交直线y=k2x(k2<0)于点F,E.若OE=OF,BD=2CD,四边形ADEF的面积为12,则k1的值为21、(4分)已知关于的一元二次方程的一个根是2,则______.22、(4分)一列数,,,,其中,(为不小于的整数),则___.23、(4分)已知中,,点为边的中点,若,则长为__________.二、解答题(本大题共3个小题,共30分)24、(8分)如图,在ABCD中,E、F分别为边AB、CD的中点,连接DE、BF、BD.若AD⊥BD,则四边形BFDE是什么特殊四边形?请证明你的结论.25、(10分)如图,△ABC中,∠A=60°,∠C=40°,DE垂直平分BC,连接BD.(1)尺规作图:过点D作AB的垂线,垂足为F.(保留作图痕迹,不写作法)(2)求证:点D到BA,BC的距离相等.26、(12分)在全民读书月活动中,某校随机调查了部分同学,本学期计划购买课外书的费用情况,并将结果绘制成如图所示的统计图.根据相关信息,解答下列问题.(1)这次调查获取的样本容量是.(直接写出结果)(2)这次调查获取的样本数据的众数是,中位数是.(直接写出结果)(3)若该校共有1000名学生,根据样本数据,估计该校本学期计划购买课外书的总花费.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、A【解析】
根据抛物线的性质,抛物线上的点离对称轴越远,对应的函数值就越小,点(-1,3)在对称轴上,即可得到答案.【详解】抛物线的解析式y=﹣(x+1)2+3可得其对称轴为x=-1,系数a<0,图像开口下下,根据抛物线上的点离对称轴越远,对应的函数值就越小,点(-1,3)在对称轴上,-3<-2所以y1<y2<3.故选A.2、A【解析】
根据第二象限内点的横坐标是负数判断.【详解】解:∵点P(a,1)在第二象限,∴a<0,∴-1、0、1、1四个数中,a的值可以是-1.故选:A.本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).3、C【解析】
根据直角三角形两锐角互余求出∠B=30°,再根据直角三角形30°角所对的直角边等于斜边的一半可得BD=2DE,根据角平分线上的点到角的两边距离相等可得CD=DE,然后根据BC=BD+CD计算即可得解.【详解】解:∵∠C=90°,∠CAB=60°,
∴∠B=90°-60°=30°,
∵DE⊥AB,
∴BD=2DE=2×3=6cm,
∵AD平分∠BAC,∠C=90°,DE⊥B,
∴CD=DE=3cm,
∴BC=BD+CD=6+3=9cm.
故选:C.本题考查了角平分线上的点到角的两边距离相等的性质,直角三角形两锐角互余的性质以及直角三角形30°角所对的直角边等于斜边的一半的性质,熟记各性质并准确识图是解题的关键.4、D【解析】
根据平行四边形的性质:对角相等即可求出的度数.【详解】四边形是平行四边形,,,.故选:.本题考查平行四边形的性质,比较简单,解答本题的关键是掌握平行四边形的对角相等.5、A【解析】正八边形的每个内角为:180°-360°÷8=135°,两个正八边形在一个顶点处的内角和为:2×135°=270°,那么另一个多边形的内角度数为:360°-270°=90°,∵正方形的每个内角为90°,∴另一个是正方形.∴第三块木板的边数是4.故选A.6、C【解析】
根据反比例函数的定义列出方程:m2−2=−1求解,再根据它的性质列出不等式:2m−1<0决定解的取舍.【详解】根据题意,m2−2=−1,解得m=±1,又∵2m−1≠0,∴m≠,∵y随x的增大而增大,2m−1<0,得m<,∴m=−1.故选C.本题考查反比例函数的性质,反比例函数的定义.根据反比例函数自变量x的次数为-1.k>0时,在各自象限y随x的增大而减小;k<0时,在各自象限y随x的增大而增大.7、D【解析】
正方形的内角和为,正方形内角相等,.【详解】解:根据多边形内角和公式:可得:正方形内角和,正方形四个内角相等正方形一个内角度数.故选:.本题考查了多边形内角和定理、正多边形每个内角都相等的性质应用,是一道基础几何计算题.8、C【解析】
由对称性质可先证得四边形AEFB是平行四边形,对角线相等的平行四边形是矩形,得到AF=BE,进而得到△BCA为等边三角形,得到角度为60°【详解】∵与关于点成中心对称∴AC=CF,BC=EC∴四边形AEFB是平行四边形当AF=BE时,即BC=AC,四边形AEFB是矩形又∵∴△BCA为等边三角形,故选C本题主要考查平行四边形的性质与矩形的判定性质,解题关键在于能够证明出三角形BCA是等边三角形二、填空题(本大题共5个小题,每小题4分,共20分)9、x≥﹣1.【解析】
根据被开方数大于等于0列式计算即可得解.【详解】解:由题意得,x+1≥0,解得x≥﹣1.故答案为x≥﹣1.10、50【解析】
乙从开始一直到终点,行1000米用时200秒,因此乙的速度为1000÷200=5米/秒,甲停下来,乙又走150÷5=30秒才与甲第一次会和,第一次会和前甲、乙共同行使150-30=120秒,从起点到第一次会和点的距离为5×150=750米,因此甲的速度为750÷120=6.25米/秒,甲行完全程的时间为1000÷6.25=160秒,甲到终点时乙行驶时间为160+30=190秒,因此乙距终点还剩200-190=10秒的路程,即10×5=50米.【详解】乙的速度为:1000÷200=5米/秒,从起点到第一次会和点距离为5×150=750米,甲停下来到乙到会和点时间150÷5=30秒,之前行驶时间150﹣30=120秒,甲的速度为750÷120=6.25米/秒,甲到终点时乙行驶时间1000÷6.25+30=190秒,还剩10秒路程,即10×5=50米,故答案为50米.考查函数图象的意义,将行程类实际问题和图象联系起来,理清速度、时间、路程之间的关系是解决问题关键.11、【解析】
设BE=x,则CE=5-x,在Rt△ABE和Rt△ACE中,由勾股定理表示出AE的平方,列出方程求解并进一步得到AE的长.【详解】设BE=x,则CE=5-x,在Rt△ABE和Rt△ACE中,由勾股定理可得:所以解得,所以AE=.考点:1.菱形的性质;2.勾股定理.12、22或1.【解析】
根据题意画出图形,由平行四边形得出对边平行,又由角平分线可以得出△ABE为等腰三角形,可以求解.【详解】∵四边形ABCD为平行四边形,∴AD∥BC,∴∠DAE=∠AEB,∵AE为角平分线,∴∠DAE=∠BAE,∴∠AEB=∠BAE,∴AB=BE,∴①当BE=3时,CE=5,AB=3,则周长为22;②当BE=5时,CE=3,AB=5,则周长为1,故答案为:22或1.本题考查了平行四边形的性质,结合了等腰三角形的判定.注意有两种情况,要进行分类讨论.13、x(x﹣7)【解析】
直接提公因式x即可.【详解】解:原式=x(x﹣7),故答案为:x(x﹣7).本题主要考查了因式分解的运用,准确进行计算是解题的关键.三、解答题(本大题共5个小题,共48分)14、(1)y=23t(0≤t≤3【解析】
(1)将点代入函数关系式,解得,有将代入,得,所以所求反比例函数关系式为;再将代入,得,所以所求正比例函数关系式为.(2)解不等式,解得,所以至少需要经过6小时后,学生才能进入教室.15、(1)见解析;(2)2cm【解析】
(1)根据全等三角形的判定定理AAS推知:△ADC≌△CEB;
(2)利用(1)中的全等三角形的对应边相等得到:AD=CE=5cm,CD=BE.则根据图中相关线段的和差关系得到BE=AD-DE.【详解】(1)证明:∵AD⊥CE,∠ACB=90°,
∴∠ADC=∠ACB=90°,
∴∠BCE=∠CAD(同角的余角相等),
在△ADC与△CEB中,∴△ADC≌△CEB(AAS);
(2)解:由(1)知,△ADC≌△CEB,
则AD=CE=5cm,CD=BE.
∵CD=CE-DE,
∴BE=AD-DE=5-3=2(cm),
即BE的长度是2cm.考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.16、(1)进价为36元,售价为48元;(2)当售价为46元时,商店每天获利最大,最大利润为:200元.【解析】
(1)根据题意,设一个垃圾分类桶的进价为x元,则售价为(x+12)元,列出方程,解方程即可得到答案;(2)根据题意,可设每天获利为w,当垃圾分类桶的售价为y元时,每天获利w最大,然后列出方程,解出方程即可得到答案.【详解】解:(1)设一个垃圾分类桶的进价为x元,则售价为(x+12)元,则,解得:,∴售价为:36+12=48元.答:一个垃圾分类桶的进价为36元,售价为48元;(2)设每天获利为w,当一个垃圾分类桶的售价为y元时,每天获利最大,则,整理得:;∴当时,商店每天获利最大,最大利润为:200元.该题以二次函数为载体,以二元一次方程组的应用、二次函数的性质及其应用为考查的核心构造而成;解题的关键是深入把握题意,准确找出命题中隐含的数量关系;灵活运用有关性质来分析、判断、解答.17、(1)见解析;(2)OA、OC、EF.【解析】
(1)根据平行四边形的AD∥BC,AB∥CD,AD=BC,AB=CD,根据平行线的性质得到∠ADE=∠CBF,由垂直的定义得到∠AEB=∠CFD=90°,根据全等三角形的性质即可得到结论;(2)根据平行四边形的性质得到AO=CO,根据直角三角形的性质即可得到结论.【详解】(1)证明:∵四边形ABCD是平行四边形∴∴∵,,∴在和中∴∴(2)∵四边形ABCD是平行四边形,∴AO=CO,∵∠DOC=120°,∴∠AOE=60°,∴∠OAE=30°,∴AO=2OE,∴OC=2OE,∵OD=OB,DE=BF,∴OE=OF,∴EF=2OE.本题考查了平行四边形的性质,全等三角形的判定和性质,直角三角形的性质,正确的识别图形是解题的关键.18、(1)购进型台灯盏,型台灯25盏;(2)当商场购进型台灯盏时,商场获利最大,此时获利为元.【解析】试题分析:(1)设商场应购进A型台灯x盏,然后根据关系:商场预计进货款为3500元,列方程可解决问题;(2)设商场销售完这批台灯可获利y元,然后求出y与x的函数关系式,然后根据一次函数的性质和自变量的取值范围可确定获利最多时的方案.试题解析:解:(1)设商场应购进A型台灯x盏,则B型台灯为(100﹣x)盏,根据题意得,30x+50(100﹣x)=3500,解得x=75,所以,100﹣75=25,答:应购进A型台灯75盏,B型台灯25盏;(2)设商场销售完这批台灯可获利y元,则y=(45﹣30)x+(70﹣50)(100﹣x),=15x+2000﹣20x,=﹣5x+2000,∵B型台灯的进货数量不超过A型台灯数量的3倍,∴100﹣x≤3x,∴x≥25,∵k=﹣5<0,∴x=25时,y取得最大值,为﹣5×25+2000=1875(元)答:商场购进A型台灯25盏,B型台灯75盏,销售完这批台灯时获利最多,此时利润为1875元.考点:1.一元一次方程的应用;2.一次函数的应用.一、填空题(本大题共5个小题,每小题4分,共20分)19、-5【解析】
根据截距的定义:直线方程y=kx+b中,b就是截距解答即可.【详解】直线的截距是−5.故答案为:−5.此题考查一次函数图象,解题关键在于掌握一次函数图象上点的坐标特征.20、2【解析】
如图,连接OD,过O作OM∥ED交AD于M,可以得出S△AOD=12S四边形ADEF,进而得到S矩形OACB的值.作DH⊥OA于H,可得S矩形OCDH【详解】解:如图,连接OD,过O作OM∥ED交AD于M.S△AOD=S△AOM+S△DOM=12OM×h1+12OM×h2==12OM(h1+h2),S四边形ADEF=12(AF+又∵OM=12(AF+ED),h1+h2=h,故S△AOD=12S四边形ADEF=12∵△AOD和矩形OACB同底等高,故S矩形OACB=12,作DH⊥OA于H.∵BD=2CD,BC=3CD,故S矩形OCDH=13×12=2,即CD×DH=xy=k1=2故答案为:2.本题考查了反比例函数与几何综合.求出S△AOD的值是解答本题的关键.21、1【解析】
根据关于x的一元二次方程x2−2ax+3a=0有一个根为2,将x=2代入方程即可求得a的值.【详解】解:∵关于x的一元二次方程x2−2ax+3a=0有一个根为2,∴22−2a×2+3a=0,解得,a=1,故答案为1.此题主要考查了一元二次方程的解,解题的关键是把已知方程的根直接代入方程得到待定系数的方程即可解决问题.22、【解析】
把a1,a2,a3代入代数式计算,找出规律,根据规律计算.【详解】a1=,,,……,2019÷3=673,∴a2019=-1,故答案为:-1.本题考查的是规律型:数字的变化类问题,正确找出数字的变化规律是解题的关键.23、【解析】
根据直角三角形斜边上的中线等于斜边的一半解答.【详解】∵∠ACB=90°,D为AB的中点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2030年中国水泥轨枕行业市场运营模式及未来发展动向预测报告
- 2024-2030年中国水果行业市场竞争战略及投资盈利分析报告
- 2024-2030年中国水性漆类涂料行业供需分析及发展风险研究报告
- 2024-2030年中国水垢清洗剂项目投资风险分析报告
- 2024-2030年中国民航机场行业运营现状发展规划分析报告
- 2024-2030年中国楼宇自控系统行业发展模式及投资战略分析报告
- 2024-2030年中国柴油机塑料件融资商业计划书
- 2024-2030年中国机场行业运营模式发展规划分析报告版
- 幼儿园豆子种植课程设计
- 2024-2030年中国智能炒菜机行业发展趋势及竞争策略分析报告
- 《湖南省医疗保险“双通道”管理药品使用申请表》
- 员工主动型行为的结构探索与量表开发
- 部编版四年级语文上册词语练习
- 时间管理主题班会课省公开课一等奖全国示范课微课金奖课件
- 2024年内蒙古恒正集团呼和浩特第二工贸有限公司招聘笔试参考题库含答案解析
- 探索·鄱阳湖智慧树知到期末考试答案2024年
- 国开2024年《0-3岁婴幼儿亲子活动设计与指导》形考作业1-3答案
- 欧美电影文化智慧树知到期末考试答案2024年
- 光伏电站安全培训
- 会议运营与管理(双语)智慧树知到期末考试答案2024年
- 24春国家开放大学《乡镇行政管理》作业1-5参考答案
评论
0/150
提交评论