2025届河南省郑州市十九中高一数学第一学期期末教学质量检测模拟试题含解析_第1页
2025届河南省郑州市十九中高一数学第一学期期末教学质量检测模拟试题含解析_第2页
2025届河南省郑州市十九中高一数学第一学期期末教学质量检测模拟试题含解析_第3页
2025届河南省郑州市十九中高一数学第一学期期末教学质量检测模拟试题含解析_第4页
2025届河南省郑州市十九中高一数学第一学期期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届河南省郑州市十九中高一数学第一学期期末教学质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的值域是A. B.C. D.2.设,则“”是“”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,φ∈R).则“f(x)是偶函数“是“A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件4.已知函数,,若恰有2个零点,则实数a的取值范围是()A. B.C. D.5.若函数在区间上单调递减,则实数满足的条件是A. B.C. D.6.已知函数,则A.0 B.1C. D.27.将函数的图象向右平移个单位长度,所得图象对应的函数()A.在区间上单调递减 B.在区间上单调递增C.在区间上单调递减 D.在区间上单调递增8.已知为偶函数,当时,,当时,,则满足不等式的整数的个数为()A.4 B.6C.8 D.109.方程的解所在的区间是A. B.C. D.10.甲、乙两人在一次赛跑中,从同一地点出发,路程s与时间t的函数关系如图所示,则下列说法正确的是()A.甲比乙先出发 B.乙比甲跑的路程多C.甲比乙先到达终点 D.甲、乙两人的速度相同二、填空题:本大题共6小题,每小题5分,共30分。11.以A(1,1),B(3,2),C(5,4)为顶点的△ABC,其边AB上的高所在的直线方程是________.12.已知函数,若函数恰有三个不同的零点,则实数k的取值范围是_____________13.已知,,试用a、b表示________.14.关于的不等式的解集是________15.函数,函数有______个零点,若函数有三个不同的零点,则实数的取值范围是______.16.已知扇形半径为8,弧长为12,则中心角为__________弧度,扇形面积是________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某快递公司在某市的货物转运中心,拟引进智能机器人分拣系统,以提高分拣效率和降低物流成本,已知购买x台机器人的总成本万元.(1)若使每台机器人的平均成本最低,问应买多少台?(2)现按(1)中的数量购买机器人,需要安排m人将邮件放在机器人上,机器人将邮件送达指定落袋格口完成分拣,经实验知,每台机器人的日平均分拣量(单位:件),已知传统人工分拣每人每日的平均分拣量为1200件,问引进机器人后,日平均分拣量达最大值时,用人数量比引进机器人前的用人数量最多可减少多少?18.已知函数.(1)若函数在区间内存在零点,求实数m的取值范围;(2)若关于x的方程有实数根,求实数m的取值范围.19.已知f(x)是定义在R上偶函数,且当x≥0时,(1)用定义法证明f(x)在(0,+∞)上单调递增;(2)求不等式f(x)>0的解集.20.已知集合:①;②;③,集合(m为常数),从①②③这三个条件中任选一个作为集合A,求解下列问题:(1)定义,当时,求;(2)设命题p:,命题q:,若p是q成立的必要不充分条件,求实数m的取值范围21.已知集合,(1)时,求及;(2)若时,求实数a的取值范围

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】函数中,因为所以.有.故选C.2、B【解析】分别求出两个不等式的的取值范围,根据的取值范围判断充分必要性.【详解】等价于,解得:;等价于,解得:,可以推出,而不能推出,所以是的必要不充分条件,所以“”是“”的必要不充分条件故选:B3、B【解析】利用必要不充分条件的概念,结合三角函数知识可得答案.【详解】若φ=π2,则f(x)=Asin(ωx+π若f(x)=Asin(ωx+φ)为偶函数,则φ=kπ+π2,k∈Z,所以“f(x)是偶函数“是“φ=π故选:B【点睛】关键点点睛:掌握必要不充分条件的概念是解题关键.4、B【解析】利用数形结合的方法,作出函数的图象,简单判断即可.【详解】依题意,函数的图象与直线有两个交点,作出函数图象如下图所示,由图可知,要使函数的图象与直线有两个交点,则,即.故选:B.【点睛】本题考查函数零点问题,掌握三种等价形式:函数零点个数等价于方程根的个数等价于两个函数图象交点个数,属基础题.5、A【解析】因为函数在区间上单调递减,所以时,恒成立,即,故选A.6、B【解析】,选B.7、D【解析】由条件根据函数的图象变换规律得到变换之后的函数解析式,再根据正弦函数的单调性判断即可【详解】解:将函数的图象向右平移个单位长度,得到,若,则,因为在上不单调,故在上不单调,故A、B错误;若,则,因为在上单调递增,故在上单调递增,故C错误,D正确;故选:D8、C【解析】由时的解析式,可先求得不等式的解集.再根据偶函数性质,即可求得整个定义域内满足不等式的解集,即可确定整数解的个数.【详解】当时,,解得,所以;当时,,解得,所以.因为为偶函数,所以不等式的解集为.故整数的个数为8.故选:C【点睛】本题考查了不等式的解法,偶函数性质的应用,属于基础题.9、C【解析】根据零点存在性定理判定即可.【详解】设,,根据零点存在性定理可知方程的解所在的区间是.故选:C【点睛】本题主要考查了根据零点存在性定理判断零点所在的区间,属于基础题.10、C【解析】结合图像逐项求解即可.【详解】结合已知条件可知,甲乙同时出发且跑的路程都为,故AB错误;且当甲乙两人跑的路程为时,甲所用时间比乙少,故甲先到达终点且甲的速度较大,故C正确,D错误.故选:C.二、填空题:本大题共6小题,每小题5分,共30分。11、2x+y-14=0【解析】求出直线AB的斜率,即可得出高的斜率,由点斜式即可求出.【详解】由A,B两点得,则边AB上的高所在直线的斜率为-2,故所求直线方程是y-4=-2(x-5),即2x+y-14=0.故答案为:2x+y-14=0.12、【解析】根据函数解析式画出函数图象,则函数的零点个数,转化为函数与有三个交点,结合函数图象判断即可;【详解】解:因为,函数图象如下所示:依题意函数恰有三个不同的零点,即函数与有三个交点,结合函数图象可得,即;故答案为:13、【解析】根据对数式指数式互化公式,结合对数换底公式、对数的运算性质进行求解即可.【详解】因为,所以,因此有:,故答案为:14、【解析】不等式,可变形为:,所以.即,解得或.故答案为.15、①.1②.【解析】(1)画出图像分析函数的零点个数(2)条件转换为有三个不同的交点求实数的取值范围问题,数形结合求解即可.【详解】(1)由题,当时,,当时,为二次函数,对称轴为,且过开口向下.故画出图像有故函数有1个零点.又有三个不同的交点则有图像有最大值为.故.故答案为:(1).1(2).【点睛】本题主要考查了数形结合求解函数零点个数与根据零点个数求参数范围的问题,属于中档题.16、.【解析】详解】试题分析:根据弧长公式得,扇形面积考点:弧度制下弧长公式、扇形面积公式的应用三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)300台;(2)90人.【解析】(1)每台机器人的平均成本为,化简后利用基本不等式求最小值;(2)由(1)可知,引进300台机器人,并根据分段函数求300台机器人日分拣量的最大值,根据最大值求若人工分拣,所需人数,再与30作差求解.【详解】(1)由总成本,可得每台机器人的平均成本.因为.当且仅当,即时,等号成立.∴若使每台机器人的平均成本最低,则应买300台.(2)引进机器人后,每台机器人的日平均分拣量为:当时,300台机器人的日平均分拣量为∴当时,日平均分拣量有最大值144000.当时,日平均分拣量为∴300台机器人的日平均分拣量的最大值为144000件.若传统人工分拣144000件,则需要人数为(人).∴日平均分拣量达最大值时,用人数量比引进机器人前的用人数量最多可减少(人).【点睛】关键点点睛:本题的关键是理解题意,根据实际问题抽象出函数关系,并会求最值,本题最关键的一点时会求的最大值.18、(1);(2).【解析】(1)先得出函数在的单调性,再根据零点存在定理建立不等式组,解之可得实数m的取值范围.(2)由已知将原方程等价于存在实数x使成立.再根据基本不等式得出,由此可求得实数m的取值范围.【详解】解:(1)因为函数与在都是增函数,所以函数在也是增函数,因为函数在区间内存在零点,所以解得.所以实数m的取值范围为.(2)关于x的方程有实数根等价于关于x的方程有实数根,所以存在实数x使成立.因为(当且仅当,时取等号),所以,所以实数m的取值范围是.19、(1)证明见解析;(2)或【解析】(1)先设,然后利用作差法比较与的大小即可判断,(2)当时,,然后结合分式不等式可求,再设,根据已知可求,然后再求解不等式【详解】解:(1)是定义在上偶函数,且当时,,设,则,所以,所以在上单调递增,(2)当时,,整理得,,解得或(舍,设,则,,整理得,,解得,(舍或,综上或故不等式的解集或20、(1);(2)【解析】(1)求出集合的范围,取交集即可(2)求出集合的范围,根据p是q成立的必要不充分条件,得到,从而求出参数的取值范围【小问1详解】选①:,若,即时,即,解得,若,则,无解,所以的解集为,故,由,可得,即,解得,故,则选②:,解得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论