天津市东丽区天津耀华滨海学校2025届高一上数学期末统考模拟试题含解析_第1页
天津市东丽区天津耀华滨海学校2025届高一上数学期末统考模拟试题含解析_第2页
天津市东丽区天津耀华滨海学校2025届高一上数学期末统考模拟试题含解析_第3页
天津市东丽区天津耀华滨海学校2025届高一上数学期末统考模拟试题含解析_第4页
天津市东丽区天津耀华滨海学校2025届高一上数学期末统考模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

天津市东丽区天津耀华滨海学校2025届高一上数学期末统考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.点A,B,C,D在同一个球的球面上,,,若四面体ABCD体积的最大值为,则这个球的表面积为A. B.C. D.2.函数,则下列坐标表示的点一定在函数图像上的是A. B.C. D.3.已知,,若对任意,或,则的取值范围是A. B.C. D.4.若tanα=2,则的值为()A.0 B.C.1 D.5.三棱柱中,侧棱垂直于底面,底面三角形是正三角形,是的中点,则下列叙述正确的是①与是异面直线;②与异面直线,且③面④A.② B.①③C.①④ D.②④6.已知函数,记集合,,若,则的取值范围是()A.[0,4] B.(0,4)C.[0,4) D.(0,4]7.已知a=1.50.2,b=log0.21.5,c=0.21.5,则()A.a>b>c B.b>c>aC.c>a>b D.a>c>b8.函数的最小值和最大值分别为()A. B.C. D.9.定义域在R上的函数是奇函数且,当时,,则的值为()A. B.C D.10.已知,,,,则,,的大小关系是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数fx=12.若函数在区间上有两个不同的零点,则实数a的取值范围是_________.13.已知A,B,C为的内角.(1)若,求的取值范围;(2)求证:;(3)设,且,,,求证:14.函数的单调递增区间为_____________15.边长为2的正方形ABCD沿对角线BD折成直二面角,则折叠后AC的长为________16.设函数则的值为________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设函数.(1)当时,求函数的零点;(2)当时,判断的奇偶性并给予证明;(3)当时,恒成立,求m的最大值.18.已知全集,集合,集合.(1)求;(2)若集合,且集合与集合满足,求实数的取值范围.19.某镇发展绿色经济,因地制宜将该乡镇打造成“特色农产品小镇”,根据研究发现:生产某农产品,固定投入万元,最大产量万斤,每生产万斤,需其他投入万元,,根据市场调查,该农产品售价每万斤万元,且所有产量都能全部售出.(利润收入成本)(1)写出年利润(万元)与产量(万斤)的函数解析式;(2)求年产量为多少万斤时,该镇所获利润最大?求出利润最大值.20.已知(1)若,求的值;(2)若,且,求的值21.已知关于的函数.(1)若函数是偶函数,求实数的值;(2)当时,对任意,记的最小值为,的最大值为,且,求实数的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】根据题意,画出示意图,结合三角形面积及四面积体积的最值,判断顶点D的位置;然后利用勾股定理及球中的线段关系即可求得球的半径,进而求得球的面积【详解】根据题意,画出示意图如下图所示因为,所以三角形ABC为直角三角形,面积为,其所在圆面的小圆圆心在斜边AC的中点处,设该小圆的圆心为Q因为三角形ABC的面积是定值,所以当四面体ABCD体积取得最大值时,高取得最大值即当DQ⊥平面ABC时体积最大所以所以设球心为O,球的半径为R,则即解方程得所以球的表面积为所以选D【点睛】本题考查了空间几何体的外接球面积的求法,主要根据题意,正确画出图形并判断点的位置,属于难题2、D【解析】因为函数,,所以,所以函数为偶函数,则、均在在函数图像上.故选D考点:函数的奇偶性3、C【解析】先判断函数g(x)的取值范围,然后根据或成立求得m的取值范围.【详解】∵g(x)=﹣2,当x<时,恒成立,当x≥时,g(x)≥0,又∵∀x∈R,f(x)<0或g(x)<0,∴f(x)=m(x﹣2m)(x+m+3)<0在x≥时恒成立,即m(x﹣2m)(x+m+3)<0在x≥时恒成立,则二次函数y=m(x﹣2m)(x+m+3)图象开口只能向下,且与x轴交点都在(,0)的左侧,∴,即,解得<m<0,∴实数m的取值范围是:(,0)故选C【点睛】本题主要考查指数函数和二次函数的图象和性质,根据条件确定f(x)=m(x﹣2m)(x+m+3)<0在x≥时恒成立是解决本题的关键,综合性较强,难度较大4、B【解析】将目标是分子分母同时除以,结合正切值,即可求得结果.【详解】==.故选:【点睛】本题考查齐次式的化简和求值,属基础题.5、A【解析】对于①,都在平面内,故错误;对于②,为在两个平行平面中且不平行的两条直线,底面三角形是正三角形,是中点,故与是异面直线,且,故正确;对于③,上底面是一个正三角形,不可能存在平面,故错误;对于④,所在的平面与平面相交,且与交线有公共点,故错误.故选A6、C【解析】对分成和两种情况进行分类讨论,结合求得的取值范围.【详解】当时,,此时,符合题意.当时,,由解得或,由得或,其中,,和都不是这个方程的根,要使,则需.综上所述,的取值范围是.故选:C7、D【解析】由对数和指数函数的单调性比较大小即可.【详解】因为,所以故选:D8、C【解析】2.∴当时,,当时,,故选C.9、A【解析】根据函数的奇偶性和周期性进行求解即可.【详解】因为,所以函数的周期为,因为函数是奇函数,当时,,所以,故选:A10、B【解析】根据题意不妨设,利用对数的运算性质化简x,利用指数函数的单调性求出y的取值范围,利用指数幂的运算求出z,进而得出结果.【详解】由,不妨设,则,,,所以,故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、0【解析】先令t=cosx,则t∈-1,1,再将问题转化为关于【详解】解:令t=cosx,则则f(t)=t则函数f(t)在-1,1上为减函数,则f(t)即函数y=cos2x-2故答案为:0.12、【解析】首先根据函数的解析式确定,再利用换元法将函数在区间上有两个不同的零点的问题,转化为方程区间上有两个不同根的问题,由此列出不等式组解得答案.【详解】函数在区间上有两个不同的零点,则,故由可知:,当时,,显然不符合题意,故,又函数在区间上有两个不同的零点,等价于在区间上有两个不同的根,设,则函数在区间上有两个不同的根,等价于在区间上有两个不同的根,由得,要使区间上有两个不同的根,需满足a2-5a+1>06a故答案为:13、(1)(2)证明见解析(3)证明见解析【解析】(1)根据两角和的正切公式及均值不等式求解;(2)先证明,再由不等式证明即可;(3)找出不等式的等价条件,换元后再根据函数的单调性构造不等式,利用不等式性质即可得证.【小问1详解】,为锐角,,,解得,当且仅当时,等号成立,即.【小问2详解】在中,,,,.【小问3详解】由(2)知,令,原不等式等价为,在上为增函数,,,同理可得,,,,故不等式成立,问题得证.【点睛】本题第3问的证明需要用到,换元后转换为,再构造不等式是证明的关键,本题的难点就在利用函数单调性构造出不等式.14、【解析】先求出函数的定义域,再利用求复合函数单调区间的方法求解即得.【详解】依题意,由得:或,即函数的定义域是,函数在上单调递减,在上单调递增,而在上单调递增,于是得在是单调递减,在上单调递增,所以函数的单调递增区间为.故答案为:15、2【解析】取的中点,连接,,则,则为二面角的平面角点睛:取的中点,连接,,根据正方形可知,,则为二面角的平面角,在三角形中求出的长.本题主要是在折叠问题中考查了两点间的距离.折叠问题要注意分清在折叠前后哪些量发生了变化,哪里量没变16、【解析】直接利用分段函数解析式,先求出的值,从而可得的值.【详解】因为函数,所以,则,故答案为.【点睛】本题主要考查分段函数的解析式、分段函数解不等式,属于中档题.对于分段函数解析式的考查是命题的动向之一,这类问题的特点是综合性强,对抽象思维能力要求高,因此解决这类题一定要层次清楚,思路清晰.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)﹣3和1(2)奇函数,证明见解析(3)3【解析】(1)令求解;(2)由(1)得到,再利用奇偶性的定义判断;(3)将时,恒成立,转化为,在上恒成立求解.【小问1详解】解:当时,由,解得或,∴函数的零点为﹣3和1;【小问2详解】由(1)知,则,由,解得,故的定义域关于原点对称,又,,∴,∴是上的奇函数.【小问3详解】∵,且当时,恒成立,即,在上恒成立,∴,在上恒成立,令,易知在上单调递增∴,∴,故m的最大值为3.18、(1);(2)【解析】(1)化简集合,按照补集,并集定义,即可求解;(2),得,结合数轴,确定集合端点位置,即可求解.【详解】(1)∵;∴;∴;(2)∵,∴;∴,∴,∴实数的取值范围为.【点睛】本题考查集合间的运算,以及由集合关系求参数,属于基础题.19、(1);(2)当年产量为万斤时,该镇所获利润最大,最大利润为万元【解析】(1)根据利润收入成本可得函数解析式;(2)分别在和两种情况下,利用二次函数和对勾函数最值的求法可得结果.【小问1详解】由题意得:;【小问2详解】当时,,则当时,;当时,(当且仅当,即时取等号),;,当,即年产量为万斤时,该镇所获利润最大,最大利润为万元.20

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论