版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届安徽省肥东圣泉中学高二数学第一学期期末调研试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知p、q是两个命题,若“(¬p)∨q”是假命题,则()A.p、q都是假命题 B.p、q都是真命题C.p是假命题q是真命题 D.p是真命题q是假命题2.若等比数列满足,,则数列的公比为()A. B.C. D.3.已知函数,则()A.1 B.2C.3 D.54.设双曲线的离心率为,则下列命题中是真命题的为()A.越大,双曲线开口越小 B.越小,双曲线开口越大C.越大,双曲线开口越大 D.越小,双曲线开口越大5.“”是“直线:与直线:平行”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件6.若抛物线上的点到其焦点的距离是到轴距离的倍,则等于A. B.1C. D.27.在正方体中,AC与BD的交点为M.设则下列向量与相等的向量是()A. B.C. D.8.已知数列是等比数列,,数列是等差数列,,则的值是()A. B.C. D.9.直线l:的倾斜角为()A. B.C. D.10.已知奇函数是定义在R上的可导函数,的导函数为,当时,有,则不等式的解集为()A. B.C. D.11.直线的一个法向量为()A. B.C. D.12.“杨辉三角”是中国古代重要的数学成就,它比西方的“帕斯卡三角形”早了300多年,如图是由“杨辉三角”拓展而成的三角形数阵,记为图中虚线上的数1,3,6,10,…构成的数列的第n项,则的值为()A.1225 B.1275C.1326 D.1362二、填空题:本题共4小题,每小题5分,共20分。13.已知,是双曲线的两个焦点,以线段为边作正,若边的中点在双曲线上,则双曲线的离心率____________.14.若和或都是假命题,则的范围是__________15.一个六棱锥的体积为,其底面是边长为的正六边形,侧棱长都相等,则该六棱锥的侧面积为.16.已知数列满足,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆C的中心在原点,焦点在x轴上,焦距为2,离心率为(1)求椭圆C的方程;(2)设直线l经过点M(0,1),且与椭圆C交于A,B两点,若,求直线l的方程18.(12分)已知函数(1)讨论的单调性;(2)当时,证明19.(12分)动点与定点的距离和它到定直线的距离的比是,记动点M的轨迹为曲线C.(1)求曲线C的方程;(2)已知过点的直线与曲线C相交于两点,,请问点P能否为线段的中点,并说明理由.20.(12分)已知点,圆,点Q在圆上运动,的垂直平分线交于点P.(1)求动点P的轨迹的方程;(2)过点的动直线l交曲线C于A、B两点,在y轴上是否存在定点T,使以AB为直径的圆恒过这个点?若存在,求出点T的坐标,若不存在,请说明理由.21.(12分)如图1,在中,,,,分别是,边上的中点,将沿折起到的位置,使,如图2(1)求点到平面距离;(2)在线段上是否存在一点,使得平面与平面夹角的余弦值为.若存在,求出长;若不存在,请说明理由22.(10分)自疫情爆发以来,由于党和国家对抗疫工作高度重视,在人民群众的不懈努力下,我国抗疫工作取得阶段性成功,国家经济很快得到复苏.在餐饮业恢复营业后,某快餐店统计了近天内每日接待的顾客人数,将前天的数据进行整理得到频率分布表和频率分布直方图.组别分组频数频率第组第组第组第组第组合计(1)求、、的值,并估计该快餐店在前天内每日接待的顾客人数的平均数;(2)已知该快餐店在前50天内每日接待的顾客人数的方差为,在后天内每日接待的顾客人数的平均数为、方差为,估计这家快餐店这天内每日接待的顾客人数的平均数和方差.()
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由已知可得¬p,q都是假命题,从而可分析判断各选项【详解】∵“(¬p)∨q”是假命题,∴¬p,q都是假命题,∴p真,q假,故选:D.2、D【解析】设等比数列的公比为,然后由已知条件列方程组求解即可【详解】设等比数列的公比为,因为,,所以,所以,解得,故选:D3、C【解析】利用导数的定义,以及运算法则,即可求解.【详解】,,所以,所以故选:C4、C【解析】根据双曲线的性质结合离心率对双曲线开口大小的影响即可得解.【详解】解:对于A,越大,双曲线开口越大,故A错误;对于B,越小,双曲线开口越小,故B错误;对于C,由,越大,则越大,双曲线开口越大,故C正确;对于D,越小,则越小,双曲线开口越小,故D错误.故选:C.5、C【解析】根据两直线平行求得的值,由此确定充分、必要条件.【详解】由于,所以,当时,两直线重合,不符合题意,所以.所以“”是“直线:与直线:平行”的充要条件.故选:C6、D【解析】根据抛物线的定义及题意可知3x0=x0+,得出x0求得p,即可得答案【详解】由题意,3x0=x0+,∴x0=∴∵p>0,∴p=2.故选D【点睛】本题主要考查了抛物线的定义和性质.考查了考生对抛物线定义的掌握和灵活应用,属于基础题7、C【解析】根据空间向量的运算法则,推出的向量表示,可得答案.【详解】,故选:C.8、B【解析】根据等差数列和等比数列下标和的性质即可求解.【详解】为等比数列,,,,;为等差数列,,,,,∴.故选:B.9、D【解析】先求得直线的斜率,由此求得倾斜角.【详解】依题意,直线的斜率为,倾斜角的范围为,则倾斜角为.故选:D.10、B【解析】根据给定的不等式构造函数,再探讨函数的性质,借助性质解不等式作答.【详解】依题意,令,因是R上的奇函数,则,即是R上的奇函数,当时,,则有在单调递增,又函数在R上连续,因此,函数在R上单调递增,不等式,于是得,解得,所以原不等式的解集是.故选:B11、B【解析】直线化为,求出直线的方向向量,因为法向量与方向向量垂直,逐项验证可得答案.【详解】直线的方向向量为,化为,直线的方向向量为,因为法向量与方向向量垂直,设法向量为,所以,由于,A错误;,故B正确;,故C错误;,故D错误;故选:B.12、B【解析】观察前4项可得,从而可求得结果【详解】由题意可得,……,观察规律可得,所以,故选:B二、填空题:本题共4小题,每小题5分,共20分。13、##【解析】根据线段为边作正,得到M在y轴上,求得M的坐标,再由,得到边的中点坐标,代入双曲线方程求解.【详解】以线段为边作正,则M在y轴上,设,则,因为,所以边的中点坐标为,因为边的中点在双曲线上,所以,因为,所以,即,解得,因为,所以,故答案为:14、【解析】先由和或都是假命题,求出x的范围,取交集即可.【详解】若为假命题,则有或若或是假命题,则所以的范围是即的范围是胡答案:15、【解析】判断棱锥是正六棱锥,利用体积求出棱锥的高,然后求出斜高,即可求解侧面积∵一个六棱锥的体积为,其底面是边长为2的正六边形,侧棱长都相等,∴棱锥是正六棱锥,设棱锥的高为h,则棱锥斜高为该六棱锥的侧面积为考点:棱柱、棱锥、棱台的体积16、【解析】由题,用累乘法求得通项公式:,则,通过裂项求和即可得出结果.【详解】由题,所以累乘法求通项公式:,所以,经验证时,符合.所以,则.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)或【解析】(1)根据椭圆的焦距为2,离心率为,求出,,即可求椭圆的方程;(2)设直线方程为,代入椭圆方程,由得,利用韦达定理,化简可得,求出,即可求直线的方程.试题解析:(1)设椭圆方程为,因为,所以,所求椭圆方程为.(2)由题得直线l的斜率存在,设直线l方程为y=kx+1,则由得,且.设,则由得,又,所以消去得,解得,,所以直线的方程为,即或.18、(1)答案见解析(2)证明见解析【解析】(1)求导得,进而分和两种情况讨论求解即可;(2)根据题意证明,进而令,再结合(1)得,研究函数的性质得,进而得时,,即不等式成立.【小问1详解】解:函数的定义域为,,∴当时,在上恒成立,故函数在区间上单调递增;当时,由得,由得,即函数在区间上单调递增,在上单调递减;综上,当时,在区间上单调递增;当时,在区间上单调递增,在上单调递减;【小问2详解】证明:因为时,证明,只需证明,由(1)知,当时,函数在区间上单调递增,在上单调递减;所以.令,则,所以当时,,函数单调递减;当时,,函数单调递增,所以.所以时,,所以当时,19、(1)(2)不能,理由见解析.【解析】(1)利用题中距离之比列出关于动点的方程即可求解;(2)先假设点P能为线段的中点,再利用点差法求出直线的斜率,最后联立直线与曲线进行检验即可.【小问1详解】解:动点与定点的距离和它到定直线的距离的比是则等式两边平方可得:化简得曲线C的方程为:【小问2详解】解:点不能为线段的中点,理由如下:由(1)知,曲线C的方程为:过点的直线斜率为,,因为过点的直线与曲线C相交于两点,所以,两式作差并化简得:①当为的中点时,则,②将②代入①可得:此时过点的直线方程为:将直线方程与曲线C方程联立得:,,无解与过点的直线与曲线C相交于两点矛盾所以点不能为线段的中点【点睛】方法点睛:当圆锥曲线中涉及中点和斜率的问题时,常用点差法进行求解.20、(1);(2)存在,T(0,1)﹒【解析】(1)根据椭圆的定义,结合即可求P的轨迹方程;(2)假设存在T(0,t),设AB方程为,联立直线方程和椭圆方程,代入=0即可求出定点T.【小问1详解】由题可知,,则,由椭圆定义知P的轨迹是以F1、为焦点,且长轴长为的椭圆,∴,∴,∴P的轨迹方程为C:;【小问2详解】假设存在T(0,t)满足题意,易得AB的斜率一定存在,否则不会存在T满足题意,设直线AB的方程为,联立,化为,易知恒成立,∴(*)由题可知,将(*)代入可得:即∴,解,∴在y轴上存在定点T(0,1),使以AB为直径的圆恒过这个点T.21、(1)(2)存在,【解析】(1)根据题意分别由已知条件计算出的面积和的面积,利用求解,(2)如图建立空间直角坐标系,设,然后求出平面与平面的法向量,利用向量平夹角公式列方程可求得结果【小问1详解】在中,,因为,分别是,边上的中点,所以∥,,所以,所以,因为,所以平面,所以平面,因为平面,所以,所以,因为平面,平面,所以平面平面,因为,所以,因为,所以是等边三角形,取的中点,连接,则,,因为平面平面,平面平面,平面,所以平面,在中,,所以边上的高为,所以,在梯形中,,设点到平面的距离为,因为,所以,所以,得,所以点到平面的距离为【小问2详解】由(1)可知平面,,所以以为原点,建立如图所示的空间直角坐标系,则,设,则,设平面的法向量为,则,令,则,设平面的法向量为,则,令,则,则平面与平面夹角的余弦值为,两边平方得,,解得或(舍去),所以,所以22、(1),,,平均数为;(2)平均数为,方差为.【解析】(1)计算出第组的频数,可求得的值,利用频数、频率和总数的关系可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《营养膳食与卫生》课程标准
- 《行政职业能力测验》山西省晋城市高平市2024年公务员考试模拟试题含解析
- 2024年农研所上半年工作总结
- 《知情保密原则》课件
- 《华为战略管理》课件
- 《车辆运行安全管理》课件
- 2019年高考语文试卷(新课标Ⅱ卷)(解析卷)
- 康复口腔科护士的职业发展
- 2023-2024年项目部安全管理人员安全培训考试题综合题
- 2024企业主要负责人安全培训考试题附答案(综合题)
- 2025初级会计职称《初级会计实务》全真模拟试及答案解析(3套)
- 2025年1月山西、陕西、宁夏、青海普通高等学校招生考试适应性测试(八省联考)历史试题 含解析
- ISO 56001-2024《创新管理体系-要求》专业解读与应用实践指导材料之6:“4组织环境-4.4创新管理体系”(雷泽佳编制-2025B0)
- 2024-2030年撰写:中国汽车半轴行业发展趋势及竞争调研分析报告
- 北疆文化全媒体传播体系的构建与实践
- 2025届福建省厦门市重点中学高三第二次联考语文试卷含解析
- 期末 (试题) -2024-2025学年人教PEP版英语六年级上册
- 上海春季高考英语真题试题word精校版(含答案)
- 2022年度培训工作总结
- 应急照明装置安装施工方法
- 静力触探技术标准
评论
0/150
提交评论