2025届山东省莒县第二中学实验班高二上数学期末学业质量监测试题含解析_第1页
2025届山东省莒县第二中学实验班高二上数学期末学业质量监测试题含解析_第2页
2025届山东省莒县第二中学实验班高二上数学期末学业质量监测试题含解析_第3页
2025届山东省莒县第二中学实验班高二上数学期末学业质量监测试题含解析_第4页
2025届山东省莒县第二中学实验班高二上数学期末学业质量监测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届山东省莒县第二中学实验班高二上数学期末学业质量监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在平面直角坐标系xOy中,双曲线(,)的左、右焦点分别为,,点M是双曲线右支上一点,,且,则双曲线的离心率为()A. B.C. D.2.已知数列中,,则()A.2 B.C. D.3.已知函数的图象过点,令.记数列的前n项和为,则()A. B.C. D.4.若椭圆的一个焦点为,则的值为()A.5 B.3C.4 D.25.设是双曲线的两个焦点,为坐标原点,点在上且,则的面积为()A. B.3C. D.26.焦点为的抛物线标准方程是()A. B.C. D.7.已知等差数列{an}中,a4+a9=8,则S12=()A.96 B.48C.36 D.248.已知抛物线的焦点为F,过点F作倾斜角为的直线l与抛物线交于两点,则POQ(O为坐标原点)的面积S等于()A. B.C. D.9.已知等比数列的首项为1,公比为2,则=()A. B.C. D.10.2020年北京时间11月24日我国嫦娥五号探月飞行器成功发射.嫦娥五号是我国探月工程“绕、落、回”三步走的收官之战,经历发射入轨、地月转移、近月制动、环月飞行、着陆下降、月面工作、月面上升、交会对接与样品转移、环月等待、月地转移、再入回收等11个关键阶段.在经过交会对接与样品转移阶段后,若嫦娥五号返回器在近月点(离月面最近的点)约为200公里,远月点(离月面最远的点)约为8600公里,以月球中心为一个焦点的椭圆形轨道上等待时间窗口和指令进行下一步动作,月球半径约为1740公里,则此椭圆轨道的离心率约为()A.0.32 B.0.48C.0.68 D.0.8211.已知抛物线C:,则过抛物线C的焦点,弦长为整数且不超过2022的直线的条数是()A.4037 B.4044C.2019 D.202212.在等比数列中,,,则等于()A. B.5C. D.9二、填空题:本题共4小题,每小题5分,共20分。13.设函数的导数为,且,则___________14.如图,正四棱锥的棱长均为2,点E为侧棱PD的中点.若点M,N分别为直线AB,CE上的动点,则MN的最小值为______15.已知四面体中,,分别在,上,且,,若,则________.16.动点M在圆上移动,则M与定点连线的中点P的轨迹方程为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数()(1)讨论函数的单调区间;(2)若有两个极值点,(),且不等式恒成立,求实数m的取值范围18.(12分)已知复数,其中i是虚数单位,m为实数(1)当复数z为纯虚数时,求m的值;(2)当复数在复平面内对应的点位于第三象限时,求m的取值范围19.(12分)已知抛物线C的顶点在坐标原点,准线方程为(1)求抛物线C的标准方程;(2)若AB是过抛物线C的焦点F的弦,以弦AB为直径的圆与直线的位置关系是什么?先给出你的判断结论,再给出你的证明,并作出必要的图形20.(12分)如图,在四棱锥中,底面ABCD,,,,(1)证明:;(2)当PB的长为何值时,直线AB与平面PCD所成角的正弦值为?21.(12分)记为等差数列的前n项和,已知.(1)求的通项公式;(2)求的最小值.22.(10分)已知数列的前项和为,且(1)求数列的通项公式;(2)记,求数列的前项和

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】本题考查双曲线的定义、几何性质及直角三角形的判定即可解决.【详解】因为,,所以在中,边上的中线等于的一半,所以.因为,所以可设,,则,解得,所以,由双曲线的定义得,所以双曲线的离心率故选:A2、A【解析】根据数列的周期性即可求解.【详解】由得,显然该数列中的数从开始循环,数列的周期是,所以.故选:A.3、D【解析】由已知条件推导出,.由此利用裂项求和法能求出【详解】解:由,可得,解得,则.∴,故选:【点睛】本题考查了函数的性质、数列的“裂项求和”,考查了推理能力与计算能力,属于中档题4、B【解析】由题意判断椭圆焦点在轴上,则,解方程即可确定的值.【详解】有题意知:焦点在轴上,则,从而,解得:.故选:B.5、B【解析】由是以P为直角直角三角形得到,再利用双曲线的定义得到,联立即可得到,代入中计算即可.【详解】由已知,不妨设,则,因为,所以点在以为直径的圆上,即是以P为直角顶点的直角三角形,故,即,又,所以,解得,所以故选:B【点晴】本题考查双曲线中焦点三角形面积的计算问题,涉及到双曲线的定义,考查学生的数学运算能力,是一道中档题.6、D【解析】设抛物线的方程为,根据题意,得到,即可求解.【详解】由题意,设抛物线的方程为,因为抛物线的焦点为,可得,解得,所以抛物线的方程为.故选:D.7、B【解析】利用等差数列的性质求解即可.【详解】解:由等差数列的性质得.故选:B8、A【解析】由抛物线的方程可得焦点的坐标,由题意设直线的方程,与抛物线的方程,联立求出两根之和及两根之积,进而求出,的纵坐标之差的绝对值,代入三角形的面积公式求出面积【详解】抛物线的焦点为,,由题意可得直线的方程为,设,,,,联立,整理可得:,则,,所以,所以,故选:A9、D【解析】数列是首项为1,公比为4的等比数列,然后可算出答案.【详解】因为等比数列的首项为1,公比为2,所以数列是首项为1,公比为4的等比数列所以故选:D10、C【解析】由题意可知,求出的值,从而可求出椭圆的离心率【详解】解:由题意得,解得,所以离心率,故选:C11、A【解析】根据已知条件,结合抛物线的性质,先求出过焦点的最短弦长,再结合抛物线的对称性,即可求解【详解】∵抛物线C:,即,由抛物线的性质可得,过抛物线焦点中,长度最短的为垂直于y轴的那条弦,则过抛物线C的焦点,长度最短的弦的长为,由抛物线的对称性可得,弦长在5到2022之间的有共有条,故弦长为整数且不超过2022的直线的条数是故选:A12、D【解析】由等比数列的项求公比,进而求即可.【详解】由题设,,∴故选:D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】,而,所以,,故填:.考点:导数14、【解析】根据题意,先建立空间直角坐标系,然后写出相关点的坐标,再写出相关的向量,然后根据点分别为直线上写出点的坐标,这样就得到,然后根据的取值范围而确定【详解】建立如图所示的空间直角坐标系,则有:,,,,,可得:设,且则有:,可得:则有:故则当且仅当时,故答案为:15、【解析】连接,根据题意,结合空间向量加减法运算求解即可.【详解】解:连接∵四面体中,,分别在,上,且,∴∴∴.故答案为:16、##【解析】设,中点,根据中点坐标公式求出,代入圆的标准方程即可得出结果.【详解】设,中点,则,即,因为在圆上,代入得故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)时,在递增,时,在递减,在递增(2)【解析】(1)求出函数导数,分和两种情况讨论可得单调性;(2)根据导数可得有两个极值点等价于有两不等实根,则可得出,进而得出,可得恒成立,等价于,构造函数求出最小值即可.【小问1详解】的定义域是,,①时,,则,在递增;②时,令,解得,令,解得,故在递减,在递增.综上,时,在递增时,在递减,在递增【小问2详解】,定义域是,有2个极值点,,即,则有2个不相等实数根,,∴,,解得,且,,从而,由不等式恒成立,得恒成立,令,当时,恒成立,故函数在上单调递减,∴,故实数m的取值范围是【点睛】关键点睛:本题考查利用导数解决不等式的恒成立问题,解题的关键是将有两个极值点等价于有两不等实根,以此求出,再将不等式恒成立转化为求的最小值.18、(1)4(2)【解析】(1)根据纯虚数,实部为零,虚部不为零列式即可;(2)根据第三象限,实部小于零,虚部小于零,列式即可.【小问1详解】因为为纯虚数,所以解得或,且且综上可得,当为纯虚数时;【小问2详解】因为在复平面内对应的点位于第三象限,解得或,且即,故的取值范围为.19、(1);(2)相切,证明过程、图形见解析.【解析】(1)根据抛物线的准线方程,结合抛物线标准方程进行求解即可;(2)设出直线AB的方程与抛物线方程联立,利用一元二次方程根与系数关系,结合圆的性质进行求解即可.【小问1详解】因为抛物线C的顶点在坐标原点,准线方程为,所以设抛物线C的标准方程为:,因为该抛物线的准线方程为,所以有,所以抛物线C的标准方程;小问2详解】以弦AB为直径的圆与直线相切,理由如下:因为AB是过抛物线C的焦点F的弦,所以直线AB的斜率不为零,设椭圆的焦点坐标为,设直线AB的方程为:,则有,设,则有,因此,所以弦AB为直径的圆的圆心的横坐标为:,以弦AB为直径的圆的直径为:所以弦AB为直径的圆的半径,以弦AB为直径的圆的圆心到准线的距离为:,所以以弦AB为直径的圆与直线相切.【点睛】关键点睛:利用一元二次方程的根与系数关系是解题的关键.20、(1)证明见解析(2)【解析】(1)由线面垂直的判断定理证明平面PAB,再由线面垂直的性质定理即可证明;(2)以A为原点,AB,AC,AP分别为x轴,y轴,z轴,建立空间直角坐标系,设,求出平面PCD的法向量的坐标,根据直线AB与平面PCD所成角的正弦值为,利用向量法可求得,从而可求解PB的长.【小问1详解】证明:因为底面ABCD,又平面ABCD,所以,又,,AB,平面PAB,所以平面PAB,又平面PAB,所以;小问2详解】解:因为底面ABCD,,所以以A为原点,AB,AC,AP分别为x轴,y轴,z轴,建立如图所示空间直角坐标系,因为,,,所以,则,,所以,,,,设,则,,,设平面PCD的法向量为,则,令,则,,所以,所以,解得,则,所以当时,直线AB与平面PCD所成角正弦值为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论