版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页2024年山西临汾平阳中学九年级数学第一学期开学调研模拟试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)一次函数的图像不经过第四象限,那么的取值范围是()A. B. C. D.2、(4分)边长为4的等边三角形的面积是()A.4 B.4 C.4 D.3、(4分)下列命题中,假命题是()A.对角线互相平分的四边形是平行四边形B.对角线互相平分且相等的四边形是矩形C.对角线互相垂直平分的四边形是菱形D.对角线互相垂直且相等的四边形是正方形4、(4分)用科学记数法表示,结果为()A. B. C. D.5、(4分)某校要从四名学生中选拔一名参加市“风华小主播”大赛,选拔赛中每名学生的平均成绩及其方差如表所示.如果要选择一名成绩高且发挥稳定的学生参赛,则应选择的学生是()
甲
乙
丙
丁
8
9
9
8
1
1
1.2
1.3
A.甲 B.乙 C.丙 D.丁6、(4分)下列图形中,既是轴对称又是中心对称图形的是()A.正方形 B.等边三角形 C.平行四边形 D.正五边形7、(4分)均匀地向一个容器注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为折线),这个容器的形状可以是()A. B. C. D.8、(4分)一名射击运动员连续打靶8次,命中的环数如图所示,则命中环数的众数与中位数分别为(
)A.9环与8环 B.8环与9环 C.8环与8.5环 D.8.5环与9环二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)_____.10、(4分)一组数据:3,0,,3,,1.这组数据的众数是_____________.11、(4分)如图所示,在△ABC中,∠B=90°,AB=3,AC=5,将△ABC折叠,使点C与点A重合,折痕为DE,则△ABE的周长为.12、(4分)在代数式,,,,中,是分式的有______个.13、(4分)如图,菱形的边长为1,;作于点,以为一边,作第二个菱形,使;作于点,以为一边,作第三个菱形,使;…依此类推,这样作出第个菱形.则_________._________.三、解答题(本大题共5个小题,共48分)14、(12分)阅读材料:解分式不等式3x+解:根据实数的除法法则:同号两数相除得正数,异号两数相除得负数,因此,原不等式可转化为:①3x+6<0解①得:无解,解②得:﹣2<x<1所以原不等式的解集是﹣2<x<1请仿照上述方法解下列分式不等式:(1)x-42x+5>1;(2)x+215、(8分)解方程:-=1.16、(8分)计算(1)分解因式:a2-b2+ac-bc(2)解不等式组,并求出不等式组的整数解之和.17、(10分)某校为了解八年级男生立定跳远测试情况,随机抽取了部分八年级男生的测试成绩进行统计,根据评分标准,将他们的成绩分为优秀、良好、及格、不及格四个等级,以下是根据调查结果绘制的统计图表的一部分.根据以上信息,解答下列问题:(1)被调查的男生中,成绩等级为不及格的男生人数有__________人,成绩等级为良好的男生人数占被调查男生人数的百分比为__________%;(2)被调查男生的总数为__________人,条形统计图中优秀的男生人数为__________人;(3)若该校八年级共有300名男生,根据调查结果,估计该校八年级男生立定跳远测试成绩为良好和优秀的男生人数.18、(10分)《九章算术》卷九中记载:今有立木,系索其末,委地三尺.引索却行,去本八尺而索尽.问索长几何?译文:今有一竖立着的木柱,在木柱的上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有3尺.牵着绳索(绳索头与地面接触)退行,在距木柱根部8尺处时绳索用尽.问绳索长是多少?B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)当=______时,分式的值为0.20、(4分)若,则关于函数的结论:①y随x的增大而增大;②y随x的增大而减小;③y恒为正值;④y恒为负值.正确的是________.(直接写出正确结论的序号)21、(4分)菱形的面积是16,一条对角线长为4,则另一条对角线的长为______.22、(4分)一次函数y=﹣x+4图象与x轴、y轴分别交于点A、点B,点P为正比例函数y=kx(k>0)图象上一动点,且满足∠PBO=∠POA,则AP的最小值为_____.23、(4分)一次函数y=kx+3的图象如图所示,则方程kx+3=0的解为__________.二、解答题(本大题共3个小题,共30分)24、(8分)解不等式组:请结合题意填空,完成本题的解答.(1)解不等式①,得;
(2)解不等式②,得;
(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为.25、(10分)如图,在平面直角坐标系xOy中,△ABC的三个顶点坐标分别为A(1,1),B(4,0),C(4,4).(1)按下列要求作图:①将△ABC向左平移4个单位,得到△A1B1C1;②将△A1B1C1绕点B1逆时针旋转90°,得到△A1B1C1.(1)求点C1在旋转过程中所经过的路径长.26、(12分)某校八年级学生数学科目期末评价成绩是由完成作业、单元检测、期末考试三项成绩构成的,如果期末评价成绩80分以上(含80分),则评为“优秀”.下面表中是小张和小王两位同学的成绩记录:完成作业单元检测期末考试小张709080小王6075(1)若按三项成绩的平均分记为期末评价成绩,请计算小张的期末评价成绩;(2)若按完成作业、单元检测、期末考试三项成绩按1:2:m的权重,小张的期末评价成绩为81分,则小王在期末(期末成绩为整数)应该最少考多少分才能达到优秀?
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、A【解析】
根据一次函数经过的象限即可确定,解不等式即可得出的取值范围.【详解】∵一次函数的图像不经过第四象限,∴,解得,故选:A.本题主要考查一次函数的图象及性质,掌握一次函数的图象及性质是解题的关键.2、C【解析】
如图,根据等边三角形三线合一的性质可以求得高线AD的长度,根据BC和AD即可求得三角形的面积.【详解】解:如图,∵△ABC是等边三角形,AD⊥BC,∴BD=DC=2,在Rt△ABD中,AB=4,BD=2,∴AD=,∴S△ABC=BC·AD==4,故选C.本题考查了等边三角形的性质、勾股定理有应用、三角形的面积等,熟练掌握相关性质以及定理是解题的关键.3、D【解析】
根据平行四边形的判定方法可知A是真命题,根据矩形的判定方法可知B是真命题,根据菱形的判定方法可知C是真命题,根据对角线互相垂直平分且相等的四边形是正方形,可知D是假命题.【详解】A.对角线互相平分的四边形是平行四边形,是真命题;B.对角线互相平分且相等的四边形是矩形,是真命题;C.对角线互相垂直平分的四边形是菱形,是真命题;D.对角线互相垂直且相等的四边形是正方形,是假命题;故选D.本题主要考查了命题与定理,解题时注意:对角线互相垂直平分且相等的四边形是正方形,对角线互相垂直且相等的四边形可能是等腰梯形或筝形.4、B【解析】
小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】﹣0.0000014=﹣1.4×10﹣1.故选B.本题考查了用科学记数法表示较小的数.一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.5、B【解析】
从平均成绩分析乙和丙要比甲和丁好,从方差分析甲和乙的成绩比丙和丁稳定,综合两个方面可选出乙.【详解】解:根据平均成绩可得乙和丙要比甲和丁好,根据方差可得甲和乙的成绩比丙和丁稳定,因此要选择一名成绩高且发挥稳定的学生参赛,选择乙,故选B.6、A【解析】
根据轴对称图形与中心对称图形的概念求解.【详解】A、正方形既是轴对称图形,也是中心对称图形,故选A正确;B、等边三角形是轴对称图形,不是中心对称图形,故选项B错误;C、平行四边形不是轴对称图形,是中心对称图形,故C错误;D、正五边形是轴对称图形,不是中心对称图形,故选项D错误.故选A.本题考查了中心对称图形与轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形的关键是要寻找对称中心,旋转180度后两部分重合.7、D【解析】试题分析:注水量一定,函数图象的走势是稍陡,平,陡;那么速度就相应的变化,跟所给容器的粗细有关.则相应的排列顺序就为D.故选D.考点:函数的图象.8、C【解析】
根据众数的定义找出出现次数最多的数;根据中位数的定义求出最中间两个数的平均数即可.【详解】根据统计图可得:8出现了3次,出现的次数最多,则众数是8;∵共有8个数,∴中位数是第4和1个数的平均数,∴中位数是(8+9)÷2=8.1.故选C.本题考查了众数和中位数,用到的知识点是众数和中位数的定义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),众数是一组数据中出现次数最多的数,注意众数不止一个.二、填空题(本大题共5个小题,每小题4分,共20分)9、【解析】
原式化为最简二次根式,合并即可得到结果.【详解】解:原式=+2=3.故答案为3此题考查了二次根式的加减法,熟练掌握运算法则是解本题的关键.10、2【解析】
根据众数的定义:一组数据中出现次数最多的数据解答即可.【详解】解:数据:2,0,,2,,1中,2出现的次数最多,所以这组数据的众数是2.故答案为:2.本题考查了众数的定义,属于基础概念题型,熟知众数的概念是关键.11、1【解析】∵在△ABC中,∠B=90°,AB=3,AC=5,
∴BC=AC∵△ADE是△CDE翻折而成,
∴AE=CE,
∴AE+BE=BC=4,
∴△ABE的周长=AB+BC=3+4=1.
故答案是:1.12、2【解析】
根据题中“是分式的有”可知,本题考查分式的判断,根据分式的基本概念,运用分式是形如分数的形式,但分母含有字母的方法,进行分析判断.【详解】解:由形如分数的形式,但分母含有字母是分式,判断出,为分式,其它为整式.故是分式的有2个.本题解题关键:理解分式的基本概念,特别注意是分式的分母含有字母.13、【解析】
在△AB1D2中利用30°角的性质和勾股定理计算出AD2=,再根据菱形的性质得AB2=AD2=,同理可求AD3和AD4的值.【详解】解:在△AB1D2中,∵,∴∠B1AD2=30°,∴B1D2=,∴AD2==,∵四边形AB2C2D2为菱形,∴AB2=AD2=,在△AB2D3中,∵,∴∠B2AD3=30°,∴B2D3=,∴AD3==,∵四边形AB3C3D3为菱形,∴AB3=AD3=,在△AB3D4中,∵,∴∠B3AD4=30°,∴B3D4=,∴AD4==,故答案为,.本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.菱形的面积等于对角线乘积的一半.也考查了锐角三角函数的知识.三、解答题(本大题共5个小题,共48分)14、(1)x>4或x<-【解析】分析:先把不等式转化为不等式组,然后通过解不等式组来求分式不等式.详解:(1)根据实数的除法法则:同号两数相除得正数,异号两数相除得负数,因此,原不等式可转化为:①x-4>02x+5>0或②x-4<0解①得:x>4解②得:x<-所以原不等式的解集是:x>4或(2)根据实数的除法法则:同号两数相除得正数,异号两数相除得负数,因此,原不等式可转化为:①x+2>02x-6<0或②x+2<0解①得:-2<x<3解②得:无解.所以原不等式的解集是:-2<x<3点睛:考查分式不等式,解题的关键是不等式转化为不等式组.15、x=–2【解析】试题分析:根据分式方程的解法即可求出答案.试题解析:解:去分母得:(x+3)2﹣4(x﹣3)=(x﹣3)(x+3)x2+6x+9﹣4x+12=x2﹣9,x=﹣2.把x=﹣2代入(x﹣3)(x+3)≠0,∴原分式方程的解为:x=﹣2.16、(1)(a-b)(a+b+c);(2)0≤x≤3,1【解析】
(1)利用分组分解法先分组,再提公因式和利用平方差公式分解,最后提公因式a-b可解答;(2)解不等式组,并找出整数解,相加可解答.【详解】(1)a2-b2+ac-bc,=(a2-b2)+(ac-bc),=(a+b)(a-b)+c(a-b),=(a-b)(a+b+c);(2),解不等式①得:x≤3,解不等式②得:x≥0,∴不等式组的解集为:0≤x≤3,∴不等式组的整数解为:0、1、2、3,和为0+1+2+3=1.本题考查了提取公因式法和分组分解法因式分解、解不等式组,(1)中难点是采用两两分组还是三一分组,a2-b2正好符合平方差公式,应考虑为一组,ac-bc可提公因式为一组,(2)的关键是准确求出两个不等式的解集.17、(1)3,24;(2)50,28;(3)估计该校八年级男生立定跳远测试成绩在良好以上的男生人数为240人.【解析】
(1)由统计图表可直接看出.(2)被调查的男生总数=不及格的人数÷它对应的比例,条形统计图中优秀的男生人数:用总数把其他三个等级的人数全部剪掉即可.(3)由(1)(2)可知,优秀56%,良好24%,该校八年级男生成绩等级为“良好”和“优秀”的学生人数=300×(良好占比+优秀占比).【详解】解:(1)3,24(2)被调查的男生总数3÷6%=50(人),条形统计图中优秀的男生人数:(3)该校八年级男生成绩等级为“良好”和“优秀”的学生人数.答:估计该校八年级男生立定跳远测试成绩在良好以上的男生人数为240人.本题考查的是表格统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.表格统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.18、绳索长为尺.【解析】
设绳索长为x尺,则根据题意可得斜边为x,直角边分别是8和x-3的直角三角形,然后运用勾股定理列方程解答即可.【详解】解:设绳索长为尺,根据题意得:答:绳索长为尺.此题考查了勾股定理的应用,解题的关键是利用题目信息构造直角三角形,从而运用勾股定理解题一、填空题(本大题共5个小题,每小题4分,共20分)19、-2【解析】
分式的值为1的条件是:(1)分子=1;(2)分母≠1.两个条件需同时具备,缺一不可.【详解】分式的值为1,即|x|-2=1,x=±2,∵x-2≠1,∴x≠2,即x=-2,故当x=-2时,分式的值为1.故答案为:-2.此题考查了分式的值为1的条件.由于该类型的题易忽略分母不为1这个条件,所以常以这个知识点来命题.20、①③【解析】
根据题意和正比例函数的性质可以判各个小题中的结论是否正确,本题得以解决.【详解】解:,函数,y随x的增大而增大,故①正确,②错误;当时,,故③正确,④错误.故答案为:①③.本题考查正比例函数的性质,解答本题的关键是明确题意,利用正比例函数的性质解答.21、8【解析】【分析】根据菱形的面积等于对角线乘积的一半进行计算即可求得.【详解】设另一条对角线的长为x,则有=16,解得:x=8,故答案为8.【点睛】本题考查了菱形的面积,熟知菱形的面积等于菱形对角线乘积的一半是解题的关键.22、2﹣2【解析】如图所示:因为∠PBO=∠POA,所以∠BPO=90°,则点P是以OB为直径的圆上.设圆心为M,连接MA与圆M的交点即是P,此时PA最短,∵OA=4,OM=2,∴MA=又∵MP=2,AP=MA-MP∴AP=.23、x=-1【解析】
观察图象,根据图象与x轴的交点解答即可.【详解】∵一次函数y=kx+1的图象与x轴的交点坐标是(-1,0),∴kx+1=0的解是x=-1.故答案为:x=-1.本题考查了一次函数与一元一次方程,解题的关键是根据交点坐标得出kx+1=0.二、解答题(本大题共3个小题,共30分)24、(1)x≥1,(2)x≤3,(3)见解析;(4
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【备战2021高考】全国2021届高中地理试题汇编(10月):H2人口的空间变化
- 2025年度汽车行业人才交流合同3篇
- 2025年城市综合体宣传栏维护与广告发布合同3篇
- 城市轨道交通信号控制
- 我心中的理想校园
- 通信技术基础知识-20220704115141
- 连锁酒店加盟指导考核试卷
- 绢纺和丝织的绿色生产与制造考核试卷
- 锅炉及辅助设备振动分析与控制考核试卷
- 速冻食品市场营销策略考核试卷
- 消防工程火灾自动报警及联动控制系统安装施工方案
- 2024年氯化工艺作业模拟考试题库试卷(含参考答案)
- 2024售后服务年终总结
- 中学消防安全应急演练方案
- 2.1.1 区域发展的自然环境基础 课件 高二地理人教版(2019)选择性必修2
- ASTM-A269-A269M无缝和焊接奥氏体不锈钢管
- 中、高级钳工训练图纸
- 2024-2030年中国车载动态称重行业投融资规模与发展态势展望研究报告
- 乒乓球教案完整版本
- 2024年重庆公交车从业资格证考试题库
- 银行解押合同范本
评论
0/150
提交评论