高中数学导数满分通关专题13 导数中对数单身狗指数找基友的应用(原卷版)_第1页
高中数学导数满分通关专题13 导数中对数单身狗指数找基友的应用(原卷版)_第2页
高中数学导数满分通关专题13 导数中对数单身狗指数找基友的应用(原卷版)_第3页
高中数学导数满分通关专题13 导数中对数单身狗指数找基友的应用(原卷版)_第4页
高中数学导数满分通关专题13 导数中对数单身狗指数找基友的应用(原卷版)_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题13导数中对数单身狗指数找基友的应用导数在高考中占据了及其重要的地位,导数是研究函数的一个重要的工具,在判断函数的单调性、求函数的极值、最值与解决函数的零点(方程的根)、不等式问题中都用到导数.而这类问题都有一条经验性规则:对数单身狗,指数找基友,指对在一起,常常要分手.考点一对数单身狗【方法总结】在证明或处理含对数函数的不等式时,如f(x)为可导函数,则有(f(x)lnx)′=f′(x)lnx+eq\f(f(x),x),若f(x)为非常数函数,求导式子中含有lnx,这类问题需要多次求导,烦琐复杂.通常要将对数型的函数“独立分离”出来,这样再对新函数求导时,就不含对数了,只需一次就可以求出它的极值点,从而避免了多次求导.这种相当于让对数函数“孤军奋战”的变形过程,我们形象的称之为“对数单身狗”.1.设f(x)>0,f(x)lnx+g(x)>0lnx+eq\f(g(x),f(x))>0,则(lnx+eq\f(g(x),f(x)))′=eq\f(1,x)+(eq\f(g(x),f(x)))′,不含超越函数,求解过程简单.或者f(x)lnx+g(x)>0f(x)(lnx+eq\f(g(x),f(x)))>0,即将前面部分提出,就留下lnx这个单身狗,然后研究剩余部分.2.设f(x)≠0,f(x)lnx+g(x)=0lnx+eq\f(g(x),f(x))=0,则(lnx+eq\f(g(x),f(x)))′=eq\f(1,x)+(eq\f(g(x),f(x)))′,不含超越函数,求解过程简单.或者f(x)lnx+g(x)=0f(x)(lnx+eq\f(g(x),f(x)))=0,即将前面部分提出,就留下lnx这个单身狗,然后研究剩余部分.【例题选讲】[例1](2016·全国Ⅱ)已知函数f(x)=(x+1)lnx-a(x-1).(1)当a=4时,求曲线y=f(x)在(1,f(1))处的切线方程;(2)若当x∈(1,+∞)时,f(x)>0,求a的取值范围.[例2]已知函数f(x)=eq\f(alnx,x+1)+eq\f(b,x),曲线y=f(x)在点(1,f(1))处的切线方程为x+2y-3=0.(1)求a,b的值;(2)证明:当x>0,且x≠1时,f(x)>eq\f(lnx,x-1).【对点精练】1.若不等式xlnx≥a(x-1))对所x≥1有都成立,求实数a的取值范围.2.(2017·全国Ⅱ)已知函数f(x)=ax2-ax-xlnx,且f(x)≥0.(1)求a;(2)证明:f(x)存在唯一的极大值点x0,且e-2<f(x0)<2-2.3.(2018·全国Ⅲ)已知函数f(x)=(2+x+ax2)·ln(1+x)-2x.(1)若a=0,证明:当-1<x<0时,f(x)<0;当x>0时,f(x)>0;(2)若x=0是f(x)的极大值点,求a.

考点二指数找基友【方法总结】在证明或处理含指数函数的不等式时,通常要将指数型的函数“结合”起来,即让指数型的函数乘以或除以一个多项式函数,这样再对新函数求导时,只需一次就可以求出它的极值点,从而避免了多次求导.这种相当于让指数函数寻找“合作伙伴”的变形过程,我们形象的称之为“指数找基友”.1.由ex+f(x)>01+eq\f(f(x),ex)>0,则(1+eq\f(f(x),ex))′=eq\f(f′(x)-f(x),ex)是一个多项式函数,变形后可大大简化运算.2.由ex+f(x)=01+eq\f(f(x),ex)=0,则(1+eq\f(f(x),ex))′=eq\f(f′(x)-f(x),ex)是一个多项式函数,变形后可大大简化运算.【例题选讲】[例3](2018·全国Ⅱ)已知函数f(x)=ex-ax2.(1)若a=1,证明:当x≥0时,f(x)≥1;(2)若f(x)在(0,+∞)只有一个零点,求a.[例4](2020·全国Ⅰ)已知函数f(x)=ex+ax2-x.(1)当a=1时,讨论f(x)的单调性;(2)当x≥0时,f(x)≥eq\f(1,2)x3+1,求a的取值范围.【对点精练】1.已知函数f(x)=ex-1-x-ax2,当x≥0时,f(x)≥0恒成立,求实数a的取值范围.2.已知函数f(x)=e-x+ax(a∈R).(1)讨论f(x)的最值;(2)若a=0,求证:f(x)>-eq\f(1,2)x2+eq\f(5,8).3.已知函数f(x)=a(x-1),g(x)=(ax-1)·ex,a∈R.(1)求证:存在唯一实数a,使得直线y=f(x)和曲线y=g(x)相切;(2)若不等式f(x)>g(x)有且只有两个整数解,求a的取值范围.

考点三指对在一起,常常要分手【方法总结】设f(x)为可导函数,则有(exlnx-f(x))′=exlnx+eq\f(ex,x)-f′(x),若f(x)为非常数函数,求导式子中还是含有ex,lnx,针对此类型,可以采用作商的方法,构造eq\f(exlnx-f(x),ex)=lnx-eq\f(f(x),ex),从而达到简化证明和求极值、最值的目的,exlnx腻在一起,常常会分手.【例题选讲】[例5](2014·全国Ⅰ)设函数f(x)=aexlnx+eq\f(bex-1,x),曲线y=f(x)在点(1,f(1))处的切线为y=e(x-1)+2.(1)求a,b;(2)证明:f(x)>1.[例6]已知函数f(x)=eq\f(1,x)+alnx,g(x)=eq\f(ex,x).(1)讨论函数f(x)的单调性;(2)证明:a=1时,f(x)+g(x)-eq\b\lc\(\rc\)(\a\vs4\al\co1(1+\f(e,x2)))lnx>e.【对点精练】1.设函数f(x)=eq\f(lnx+1,x),求证:当x>1时,不等式eq\f(f(x),e+1)>eq\f(2ex-1,(x+1)(xex+1)).2.已知f(x)=ex-alnx-a,其中常数a>0.(1)当a>e时,求函数f(x)的极值;(2)求证:e2x-2-ex-1lnx-x≥

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论