集成光电子器件及设计 - 光学微腔:原理_第1页
集成光电子器件及设计 - 光学微腔:原理_第2页
集成光电子器件及设计 - 光学微腔:原理_第3页
集成光电子器件及设计 - 光学微腔:原理_第4页
集成光电子器件及设计 - 光学微腔:原理_第5页
已阅读5页,还剩35页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第7章

光学微腔:原理集成光电子器件及设计2Outline

1.

Background

2.

Optical

Micro‐cavities:

2.1.

Standing‐wave

type:

F‐P

cavity;

2.2.

Traveling‐wave:

2.2.1.

Microring

resonator;

2.2.2.

Micro‐disk

resonator.

3Standing‐wave

&

Traveling‐wave

The

Fabry–Pérot

Cavity

~

Standing‐wave

λq

2LThe

Microring

Cavity

~

Traveling‐wave42.1.

Standing‐wave:

Fabry–Pérot

CavityL1L2hPG1

G2Charles

Fabry

(1867‐1945)Alfred

Perot(1863‐1925)F‐P

resonator

(1897)567Transmission:Reflection:Transmission

(dBm)8-30-40-10-20

FSR:

~

21

nm;

Q‐value:

~2600;

Extinction

ratio:

13dB;

1.52

1.545

1.57

1.595

1.62

Wavelength

(μm)FSR

could

be

as

large

as

200nm

by

reducing

the

cavity

length

to

about

1μm.

It

is

much

larger

than

the

MRR’s

FSR.

SOI‐nanowire

F‐P

micro‐cavity

0J.

Wang,

D.

Dai,

and

S.

He.

IPRA

conference

2010,

USA.

Bragg

gratingsQ=(6.3±0.8)x101092.2

Traveling‐wave

optical

cavity/?page_id=59silica

microtoroids10Microring

resonators&

micro‐racetrack

resonators⎪

(0)E1'

=

k2

(0

'1)

'E2

(0

'

)exp(−

jφ2

0'1')=

eE1k2

(0

'1)

'k12

(0')=

k12

(0')

+11Model

of

a

single

ring

resonator

with

one

waveguide

General

formula

11′Method

I

2

2′l4′1′l23′(0

(

(2'

('(

(0

(

(2

('⎧E20)

=

k12)E10)

+k1'0)E10)⎨E2'

=

k12')E10)

+k1'0)E10)⎪

(0)⎩('1'

(2'(2'

('1'

(0(('('1'

(2'('('1'

(2'(2

('1'

(0(0((E10)

(0)E20)E10)E20)E10)1−

k20)k1'0)

k1'0)k20)k12')

1−

k20)k1'0)=k1'0)k20)k12')1−

k20)k1'0)=

k12)

+0k0

0

k2′1′

0

αl2'1'2'1'

φ2'1'

=

βl2'1'0βl2'1'

=

mλResonance

wavelgnth⎪

(0)E1'

=

k2

(0

'1)

'E2

(0

'

)E1=

k12

(0)

+k2

(0

'1)

'k12

(0')=

k12

(0')

+=⎜

⎜∏k1'2'

⎟γ

tol

exp(−

jΦtol)=

E

⎜k1'2

∏k1'2'

⎟γ

n

exp(−

jΦn)⎝⎠(0

(

(2'

('(

(0

(

(2

('⎧E20)

=

k12)E10)

+k1'0)E10)⎨E2'

=

k12')E10)

+k1'0)E10)⎪

(0)⎩('1'

(2'(2'

('1'

(0(('('1'

(2'('('1'

(2'(2

('1'

(0((E20)E10)E10)

(0)E20)E10)=

k1'0)k20)k12')

1−k20)k1'0)1−k20)k1'0)

k1'0)k20)k12')

1−k20)k1'0)1′2′2′#N

1′1′

#1

1′

1

#0#n

2′

2

The

resonator’s

response

Ring

resonator

with

N

output

ports.

Through

port

2

1

Input

port

1

2output

port

#1

output

port

#N

2′

2

1output

port

#n

(0)2'1'k⎛

N

(n)⎞⎝

n=1

⎠Daoxin

Dai

and

Sailing

He.

Proposal

of

a

coupled‐microring‐based

wavelength‐selective

1×N

122'

(n)2E(0)⎛

(n)

n−1

(m)⎞

m=1=

k

=

jkk13121′2′#01′12′2#1121′2′#N1′21#n

2′Input

portThrough

portoutput

port

#1output

port

#noutput

port

#N(

(('1'

(0

(0

(2'

(2

(0

1

1′l4′1′

The

critical

coupling

condition

2No

power

outputs

from

the

thru

port,

i.e.,

2′

E20)

/

E10)

=

0

l23′

k20)

=

k12)

/[k12)k1'0)

k1'0)k12')]k2′1′(0

(2'(1)

For

coupler

#0,

one

has

(0)

(0)

1'2

12'('1'k20)

=

1−k

2

k12)

=

k1'0)

=

1−k

2Finally

the

critical

coupling

condition

becomes14

Special

case

I:

all

passed

filter

(n=1)

The

critical

coupling

condition

becomes0

(0)2'1'0kαl2'1'exp(−

jφ2'1')=

e

1

1′l4′1′

2

2′l23′k2′1′and2

(0)2'1'k=

1−kα<0α>0

λPowerFSR=⎜

⎜∏k1'2'

⎟γ

tol

exp(−

jΦtol)E1=

k12

+=

E

⎜k1'2

∏k1'2'

⎟γ

n

exp(−

jΦn)⎝⎠15Special

case

II:

add‐drop

filter

(n=2)

(0)2'1'k⎛

N

(n)⎞⎝

n=1

⎠2'E('1'

(2'(2

('1'

(0(0)(E20)

(0)k1'0)k20)k12')1−k20)k1'0)(0)⎛

(n)

n−1

(m)⎞

m=1

1

1′

l4′1′

(n)2

2

2′

l23′k2′1′16The

resonator’s

response

Key

features:

FSR

(free

spectral

response).

3dB‐bandwidth,

Q

factor

=

λ/BW3dB.

Resonance

wavelengths.

17Model

of

a

single

ring

resonator

with

one

waveguide

Method

IIα

is

the

loss

coefficient

of

the

ring

(zero

loss:

α

=

1).

θ

=

ωL/c,

L

=

2πr,

c

=

c0/neff,

ω

=

kc0,

k

=

2π/λThe

transmission

power

Pt1

in

the

output

waveguide,The

circulating

power

Pi2

in

the

ring

is

given

bywhere

t

=

|t|

exp

(jϕt),

|t|

representing

the

coupling

losses

and

ϕtthe

phase

of

the

coupler.On

resonance,

(θ+ϕt)

=

2πm,

where

m

is

an

integer

critical

coupling:

α=|t|

1819The

spectral

response

of

an

all‐passed

filter20Model

of

a

basic

add–drop

single

ring

resonator

filterAt

resonance:Critical

coupling:21Spectral

response

of

an

add–drop

ring

resonator

filter22Some

important

parameters

FSR

(free

spectral

range):

neffL=mλn’effL=(m‐1)λ’

(neff+

Δλ

(∂neff/

λ))L=(m‐1)(λ+Δλ)

ΔλFSR=

λ/[m

(ng/neff)]

Group

index233dB

bandwidth

(full‐width

at

half‐maximum)

|Et2|2=0.5Pt2_resonance_When

α=1,

t1=t2

(symmetrical),

one

has

Finess

Q

valueThe

intensity

enhancement

or

buildup

factor

B:

On‐resonanceLossless,

κ1=κ2

B=Qλ/(πneffL)

2425An

example

to

show

the

field

enhancement

in

the

resonator:B

~

105

Q

~1×108,

D

~

50μm,

Vm~

600

μm3Pin

=

1

mWExperimental

data1

mWPcav~

100

W,

Icav

~

2.5

GW/cm2,τ

~

100

ns,

#

of

round

trip

~

2×105.

>

100

W26Serially

Coupled

Double

Ring

Resonatorwhere

α1,2

represent

the

half

round

trip

loss

coefficients

of

ring

resonator

one

and

two

respectively.27Assuming

a

coupler

without

losses

and

symmetric

coupling

behavior,

setting

t

=

t∗

andκ=−κ∗,

one

hasIn

order

to

achieve

a

double

ring

resonator

filter

with

maximally

flat

response

for

the

drop

port,

one

should

make

28An

exampleR1=R2=5.08um,

n1=3.45,

n2=1.456,

k1=0.18,

k2=0.01~0.09.

k1=0.18,

k2=0.0164729Parallel

Coupled

Double

Ring

ResonatorSimplifiedRegular

model:30Finally31Parallel

Coupled

Double

Ring

Resonator

with

Coupling

Between

the

Two

Ring

ResonatorsThe

distance

Λ

between

the

rings

does

not

have

an

influence

on

the

transfer

characteristic.For

lossless

couplers

with

κ1=κ3=

κ:Chremmos

and

Uzunoglu.

PTL.

17(10):

2110‐2112

,

200532In

order

to

realize

a

maximally

flat

response

with

a

single

peak,

the

coupling

coefficients

have

to

obey

the

following

equation:The

corresponding

FWHM

is

given

by33Modeling

cascaded‐ring

resonators:

Method

IIIwhere34Numerical

simulation

for

microring

resonators:

FDTD

methodFDTD

simulation/en/fdtd/user_guide_cw_norm_ring.html/rsoft/application‐galle

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论