版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江大学光电信息系1集成平面光波导器件
主讲教师:戴道锌
教授
Email:
dxdai@
Tel:
0571‐88206516‐215主页:/personnelCard/dxdai浙江大学光电信息系2提纲1.
课程组介绍;2.
课程简介;3.
集成平面光波导器件;浙江大学光电信息系31.
课程组介绍浙江大学光电信息系41.1.
教学组
戴道锌
Email:
dxdai@
地址:
东五教学楼光及电磁
波研究中心215房间时尧成Email:
yaocheng@地址:
东五教学楼光及电磁波研究中心113房间浙江大学光电信息系9More
information:
/dxdai/0.html浙江大学光电信息系10Publication
list浙江大学光电信息系15
15
集成光电子实验室>2000m2实验大楼(含500m2超净室);>4000万元实验仪器设备;浙江大学光电信息系162.
课程简介浙江大学光电信息系17课程概况
2学分:
32学时理论;
秋学期共8周的课程安排;浙江大学光电信息系18教学目的与基本要求
系统、深入地开展“集成平面光波导器件”教学,使研究生对
平面光波导的理论基础、核心集成光波导器件机制原理有全
面深刻的理解;
掌握集成平面光波导器件的设计思路与方法。
鉴于集成光波导器件是当前研究热点,本课程还将结合该领
域的发展历程、最新进展,激发学生对创新研究的兴趣和热
忱,培养学生分析问题和逻辑思维能力,促进学生对学科发
展和学科方向的全局视野能力。浙江大学光电信息系191.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.主要内容及学时分配
导论:介绍课程内容、集成平面光波导器件的发展历史、现状以及展望;
平面光波导理论:模式求解与特性分析;
硅纳米线光波导;
新型耦合器件与原理I;
新型耦合器件与原理II;
阵列波导光栅器件与应用;
光学微腔原理;
光学微腔应用;
波导光栅及应用;
光子晶体波导及器件;
Plasmonic波导及器件;
文献阅读presentation;
可调谐型集成平面光波导器件及机理;
光波导调制器;
基于平面光波导器件的片上光系统与网络;
复习与答疑;浙江大学光电信息系20文献阅读‐Selected
Topics
Mode
MUXer
technology,
Graphene
on
waveguides,
On‐chip
optical
force,
Active
polymer
photonics
(e.g.,
Quantum
Dots),
Plasmonic
waveguides.
浙江大学光电信息系21教材与参考文献
教材
《微纳光子集成》
何赛灵,戴道锌.
科学出版社
参考书
《半导体导波光学器件理论及技术》,赵策洲,国防工业出版社。
Robert
G.
Hunsperger.
Integrated
Optics:
Theory
and
Technology
(Sixth
Edition),
ISBN
978‐0‐387‐89775‐2
(Online),
Springer
Link
2009.
《光集成器件》,小林功郎著,科学出版社,2002
《集成光学》,T.
塔米尔主编,科学出版社,1982浙江大学光电信息系22第1章.集成平面光波导器件导论浙江大学光电信息系23Motivation
for
integrated
photonics
Transmission
and
processing
of
signals
Laser
invented
in
1960s
stable
source
of
coherent
light;Free
space
light
transmission?
but
atmospheric
variations.
Signal
processing
various
components:
prisms,
lenses,
mirrors,
electro‐optic
modulators
and
detectors.1.
All
of
this
equipment
would
typically
occupy
a
laboratory
bench
tens
of
feet
on
a
side,
which
must
be
suspended
on
a
vibration‐proof
mount.2.
Such
a
system
is
tolerable
for
laboratory
experiments,
but
is
not
very
useful
in
practical
applications浙江大学光电信息系24Integrated
optics
/
photonics
Optical
integrated
circuits
(OIC’s)
or
Photonic
integrated
circuits
(PIC’s)
S.E.
Miller
in
1969
(/wiki/Stewart_E._Miller)The
integrated
optics
approach
to
signal
transmission
and
processing
offers
significant
advantages
in
both
performance
and
cost
when
compared
to
conventional
electrical
methods.
物美价廉浙江大学光电信息系25
Stewart
E.
MillerStewart
E.
Miller
(
09/01/1918
‐02/27/1990)
was
a
noted
American
pioneer
in
microwave
and
optical
communications.Miller
was
born
in
Milwaukee,
Wisconsin.
In
1941
he
receive
his
S.B.
and
S.M.
degrees
in
engineering
at
MIT.
He
joined
Bell
Labs
to
work
on
microwave
radar,
and
became
technical
lead
for
the
B‐29's
X‐band
(3
cm)
radar
microwave
plumbing.
After
World
War
II,
he
was
instrumental
in
AT&T's
L‐3
coaxial
cable
carrier
systems,
then
transferred
to
the
Radio
Research
Department
where
he
made
advances
in
many
millimeter‐wave
components.In
the
early
1960s,
Miller
was
the
first
to
recognize
the
potential
of
optical
communications
and
as
director
of
Guided
Wave
Research,
initiated
a
program
to
investigate
a
variety
of
periodic
lens
systems.
As
optical
fiber
was
developed
in
the
late
1960s,
he
demonstrated
its
utility,
and
also
proposed
the
combining
multiple
optical
components
on
one
semiconductor
chip.
He
became
director
of
Lightwave
Research
in
1980,
retired
in
1983,
and
then
consulted
at
Bellcore
(now
Telcordia
Technologies)
analyzing
semiconductor
lasers.Miller
held
some
80
patents
and
was
a
member
of
the
National
Academy
of
Engineering,
a
Life
Fellow
of
the
IEEE,
and
a
Fellow
of
the
American
Association
for
the
Advancement
of
Science
and
the
Optical
Society
of
America.
He
received
the
Naval
Ordnance
Development
Award
in
1945,
the
1972
IEEE
Morris
N.
LiebmannMemorial
Award,
the
1975
IEEE
W.R.G.
Baker
Prize
(with
TingyeLi
and
E.A.J.
Marcatili),
the
Franklin
Institute's
1977
Stuart
Ballantine
Medal,
and
the
1989
John
Tyndall
Award
of
the
IEEE
Lasers
and
Electro‐Optics
Societyfor
distinguished
contributions
to
fiber
optics
technology.浙江大学光电信息系262013
Dr.
James
J.
Coleman
2012
John
E
Bowers2011
David
F.
Welch
2010
Dr.
C.
Randy
Giles
2009
Dr.
Joe
Charles
Campbell
2008
Robert
Tkach2007
Emmanuel
Desurvire2006
Dr.
Donald
Ray
Scifres2005
Roger
H.
Stolen
2004
Larry
A.
Coldren2003
Dr.
Andrew
R.
Chraplyvy2002
Neal
S.
Bergano2001
Tatsuo
Izawa
2000
Dr.
Stewart
D.
Personick1999
John
B.
MacChesney1998
Dr.
Kenichi
Iga1997
Prof.
Ivan
P.
Kaminow1996
Dr.
Kenneth
O.
Hill
1995
Dr.
TingyeLi1994
Dr.
Elias
Snitzer1993
Prof.
Yasuharu
Suematsu1992
Dr.
Donald
B.
Keck1991
Dr.
David
Neil
Payne1990
Thomas
G.
Giallorenzi1989
Stewart
Edward
Miller1988
Dr.
Michael
K
BarnoskiJohn
Tyndall
Award
1987
Robert
D.
Maurerwho
has
made
pioneering,
highly
significant,
or
continuing
technical
or
leadershipcontributions
to
fiber
optics
technology浙江大学光电信息系27Advantages
of
Integrated
OpticsMany
channels
multiplexed
Huge
capacity28Advantages
of
Photonics
(VS
electronics)
Immunity
from
electromagnetic
interference
(EMI)
Freedom
from
electrical
short
circuits
or
ground
loops
Safety
in
combustible
environment
Security
from
monitoring
Low‐loss
transmission
Large
bandwidth
(i.e.,
multiplexing
capability)
Small
size,
light
weight
Inexpensive,
composed
of
plentiful
materials
Major
disadvantage:
Difficult
to
use
for
electrical
power
transmission浙江大学光电信息系浙江大学光电信息系29PICs
capability
of
transmitting
fiberPICs
the
ability
to
generate
and
process
them
Advantages
Increased
bandwidthExpanded
frequency
(wavelength)
division
multiplexingLow-loss
couplers,
including
bus
access
typesExpanded
multi-path
switchingSmaller
size,
weight,
lower
power
consumption
Batch
fabrication
economy
Improved
reliability
Improved
optical
alignment,
immunity
to
vibrationMajor
disadvantage
High
cost
of
developing
new
fabrication
technologyIntegrationPhotonics浙江大学光电信息系30In
1970s,
what
happened?to
bring
integrated
optics
out
of
the
laboratory
and
into
the
realm
of
practicalapplication
Three
main
factors:
A.
Low
loss
optical
fibers
and
connectors
(Demands),
B.
Reliable
CW
GaAlAs
and
GaInAsP
laser
diodes
(Sources),
C.
Photolithographic
microfabrication
techniques
capable
of
submicron
linewidths
(Feasibility)浙江大学光电信息系A.
Low‐loss
optical
fibers高锟,生于中国上海,光纤通讯、电机工程专家,华文媒体誉之为“光纤之父”、普世誉之为“光纤通讯之父”(Father
of
Fiber
Optic
Communications),曾任香港中文大学校长。2009年,与威拉德∙博伊尔和乔治∙埃尔伍德∙史密斯共享诺贝尔物理学奖。
31Kao,
C.K.,
"1012
bit/s
Optoelectronics
Technology",
IEE
Proceedings,
133(3):
230‐236,
June
1986.
浙江大学光电信息系
32K.C.
Kao’s
workKao,
K.C.
and
Hockham,
G.A.,
“Dielectric‐fibre
Surface
Waveguides
for
Optical
Frequencies”,
Proc.
IEE.
113(7):
1151‐1158,
July
1966.
Kao,
K.C.
and
Davies,
T.W.,
"Spectrophotometric
Studies
of
Ultra
Low
Loss
Optical
Glasses
‐
I:
Single
Beam
Method",
Journal
of
Scientific
Instruments
(Journal
of
Physics
E),
Series
2,
1:
1063‐1068,
1968.
举世公认高锟是提出用纤维材料传达光束讯号以建置通信的第一人。当时,大家已知道可用数字或模拟的方式传送讯息,已有人研究:透过气体或玻璃传送光,期望可达到高速传输,但无法克服严重衰减的问题。1965年,高锟对各种非导体纤维进行仔细的实验。按他分析,当光学讯号衰减率能低于20dB/km时,光纤通信便可行。他更进一步分析了吸收、散射、弯曲等因素,推论被包覆的石英基玻璃有可能满足衰减需求。这项关键研究结果,推动全球光纤通讯的研发工作。1966年,高锟发表了一篇题为《光频率介质纤维表面波导》的论文,开创性地提出光导纤维在通信上应用的基本原理,描述了长程及高信息量光通信所需绝缘性纤维的结构和材料特性。简单地说,只要解决好玻璃纯度和成分等问题,就能够利用玻璃制作光学纤维,从而高效传输信息。这一设想提出之后,有人称之为匪夷所思,也有人对此大加褒扬。但在争论中,高锟的设想逐步变成现实:利用石英玻璃制成的光纤应用越来越广泛,全世界掀起了一场光纤通信的革命。浙江大学光电信息系33衡特性等多个领域都作了成果都是使信号在无放大接纤,至1976年则达K.C.
Kao’s
work
高锟还开发了实现光纤通
讯所需的辅助性子系统:
据Kao’s理论,Corning
公司R.
D.
Maurer等人1970年首次
在单模纤维的构造、纤维
的强度和耐久性、纤维连
光器和耦合器以及扩散均
到1
dB/km的水平,为日后光纤通讯
技术的飞速发展奠定了理论基础。
大量的研究,而这些研究
80年代,光纤通信技术在发达国家得到了广泛推广应用。
的条件下,以高速长距离
通信的关键。34Low
loss
optical
fiber
connectors
PC
FC:
Ferrule
contactor
(钢制金属套筒)
;
PC:
Physical
contact,
RL~‐30dB;
SPC:
Super
PC,
RL~‐40dB;
UPC:
Ultra
PC,
RL~‐50dB;
APC:
Angled
PC,
RL~‐60dB;
PC:
蓝色;APC:绿色;/fiber‐optic‐tutorial‐termination.aspx
浙江大学光电信息系浙江大学光电信息系35the
most
common
fiber
optic
connectors
ST
(an
AT&T
Trademark)
is
the
most
popular
connector
for
multimode
networksFC/PC
has
been
one
of
the
most
popular
singlemode
connectors
for
many
years
SC
is
a
snap‐in
connector
that
is
widely
used
in
singlemodesystems
for
it's
excellent
performance
LC
is
a
new
connector
that
uses
a
1.25
mm
ferrule,
half
the
size
of
the
STMT‐RJ
is
a
duplex
connector
with
both
fibers
in
a
single
polymer
ferrule
Opti‐Jack
is
a
neat,
rugged
duplex
connector
Volition
is
a
slick,
inexpensive
duplex
connector
that
uses
no
ferrule
at
all
E2000/LX‐5
is
like
a
LC
but
with
a
shutter
over
the
end
of
the
fiber
MU
looks
a
miniature
SC
with
a
1.25
mm
ferrule.
It's
more
popular
in
Japan.MT
is
a
12
fiber
connector
for
ribbon
cable.
It's
main
use
is
for
preterminated
cable
assemblies.
浙江大学光电信息系36
B.
Reliable
CW
GaAlAs
and
GaInAsP
laser
diodes
Basov
and
Javan
proposed
the
semiconductor
laser
diode
concept.
In
1962,
Robert
N.
Hall
demonstrated
the
first
laser
diode
device,
made
of
gallium
arsenide
and
emitted
at
850
nm
the
near‐infrared
band
of
the
spectrum.
Later,
in
1962,
Nick
Holonyak,
Jr.
demonstrated
the
first
semiconductor
laser
with
a
visible
emission.
This
first
semiconductor
laser
could
only
be
used
in
pulsed‐beam
operation,
and
when
cooled
to
liquid
nitrogen
temperatures
(77
K).
In
1970,
Zhores
Alferov,
in
the
USSR
(Union
of
Soviet
Socialist
Republics
),
and
Izuo
Hayashi
and
Morton
Panish
of
Bell
Telephone
Laboratories
also
independently
developed
room‐temperature,
continual‐operation
diode
lasers,
using
the
heterojunction
structure./wiki/Laser37Basov
and
Javan
proposed
the
semiconductor
laser
diode
concept.Nikolay
Gennadiyevich
Basov
(Russian;
12/14/1922‐07/01/2001)
was
a
Sovietphysicist
and
educator.
For
his
fundamental
work
in
the
field
of
quantum
electronics
that
led
to
the
development
of
laser
and
maser,
Basov
shared
the
1964
Nobel
Prize
in
Physics
with
Alexander
Prokhorov
and
Charles
Hard
Townes.Ali
Mortimer
Javan
(born
12/26/1926)
is
an
Iranian
American
physicist
and
inventorat
MIT.
His
main
contributions
to
science
have
been
in
the
fields
of
quantum
physicsand
spectroscopy.
He
co‐invented
the
gas
laser
in
1960,
with
William
R.
Bennett.
Ali
Javan
has
been
ranked
Number
12
on
the
list
of
the
Top
100
living
geniuses.浙江大
MicrowaveLaser:
Light
Amplification
by
Stimulated
Emission
of
Radiation;Maser:
学光电信息系
Amplification
by
Stimulated
Emission
of
Radiation浙江大学光电信息系38First
helium‐neon
laser,
1960.First
helium‐neon
laser.
Left
to
right:
US
physicist
Donald
R.
Herriott
(1928‐2007),
Iranian‐US
physicist
Ali
Mortimer
Javan
(born
1926)
and
US
physicist
William
R.
Bennett
(1930‐2008),
with
the
first
helium‐neon
laser.
/media/147086/enlarge浙江大学光电信息系39Heterojunction
structureHerbert
Kroemer
(born
08/25/1928),
a
professor
at
UC,
Santa
Barbara,
received
his
Ph.D.
in
theoretical
physics
in
1952
from
the
University
of
Göttingen,
Germany,
with
a
dissertation
on
hot
electron
effects
in
the
then‐new
transistor,
setting
the
stage
for
a
career
in
research
on
the
physics
of
semiconductor
devices.
In
2000,
the
Nobel
Prize
in
physics
was
awarded
jointly
to
Herbert
Kroemer
(UC
Santa
Barbara,
USA)
and
Zhores
I.
Alferov
(Ioffe
Institute,
Saint
Petersburg,
Russia)
for
"developing
semiconductor
heterostructures
used
in
high‐speed‐
and
opto‐electronics"
Zhores
Ivanovich
Alferov
(Russian,
Belarusian;
born
03/15/1930)
is
a
Sovietand
Russian
physicist
and
academic
who
contributed
significantly
to
the
creation
of
modern
heterostructure
physics
and
electronics.
浙江大学光电信息系40C.
Microfabrication
techniques
depositing
a
film,
patterning
the
film
with
the
desired
micro
features,
and
removing
(or
etching)
portions
of
the
film.For
memory
chip
fabrication:
~30
lithography
steps,
~10
oxidation
steps,
~20
etching
steps,
~10
doping
steps,
and
many
others.浙江大学光电信息系41Comparison
of
sizes
of
semiconductor
manufacturing
process
nodeswith
some
microscopic
objects
and
visible
light
wavelengths
Can
size
reduction
go
further?
Moore’s
law
might
expire.
Photonics
will
replace
electronics?
Optical
interconnects浙江大学光电信息系42
In
1980sOptical
fibers
largely
replaced
metallic
wires
in
telecommunications,A
number
of
manufacturers
began
production
of
PICs
for
use
in
a
variety
of
applications浙江大学光电信息系43
In
1990sThe
incorporation
of
optical
fibers
into
telecommunications
and
data‐transmission
networks
has
been
extended
to
the
subscriber
loop
in
many
systems.
This
provides
an
enormous
bandwidth
for
multichannel
transmission
of
voice,
video
and
data
signals.
Access
to
worldwide
communications
and
data
banks
has
been
provided
by
computer
networks
such
as
the
Internet.
We
are
in
the
process
of
developing
what
some
have
called
the
“Information
superhighway.”
The
implementation
of
this
technology
has
provided
continuing
impetus
to
the
development
of
new
integrated
optic
devices
and
systems
into
the
beginning
years
of
the
21st
century.Another
technological
advance
that
has
encouraged
the
development
of
new
integrated
optic
devices
in
recent
years
is
the
availability
of
improved
fabrication
methods.
Microtechnology,
which
involves
dimensions
on
the
order
of
micrometers,
has
evolved
into
nanotechnology,
in
which
nanometer‐sized
features
are
routinely
produced.
This
new
area
of
nanophotonics,
which
includes
the
fabrication
of
photonic
crystals.浙江大学光电信息系44Material
for
PIC’s
Electronics
IC:
silicon,
…
For
PIC’s:
No
one
substrate
material
will
be
optimum
for
all
elements.
浙江大学光电信息系45Hybrid
Versus
Monolithic
Approach
Hybrid
‐
two
or
more
substrate
materials
are
somehow
bonded
together
to
optimize
performance
for
different
devices;
Advantage:
using
existing
technology,
piecing
together
devices
which
have
been
substantially
optimized
in
a
given
material
Disadvantage:
misalignment,
or
even
failure,
because
of
vibration
and
thermal
expansion.
Monolithic
‐
a
single
substrate
material
is
used
for
all
devices;
Advantage:
cheaper,
reliable.
浙江大学光电信息系46
III–V
and
II–VI
Ternary
SystemsFor
a
system:
light
emitter
+
waveguide
+
detector
The
energy
bandgap
of
the
material
can
be
changed
over
a
wide
range
by
altering
the
relative
concentrations
of
elements.
gallium
aluminum
arsenide,
Ga(1−x)AlxAs.
gallium
indium
arsenide
phosphide,
GaxIn(1−x)As(1−y)Py.浙江大学光电信息系47Silicon
is
cheaper
than
other
semiconductors浙江大学光电信息系48浙江大学光电信息系49
Silicon
photonicsA
new
technology
platform
to
enable
low
cost
and
high
performance
photonics
Low‐cost
because
of
the
CMOS‐compatible
fabrication
processes
(Photonic
devices
produced
within
standard
silicon
factory
and
with
standard
silicon
processing);
Low‐loss
waveguides;
Ultra‐high
index
contrast
enables
ultra‐sharp
bending,
ultrasmall
devices
size.
However,
for
active
devices
(lasers,
modulators,
photodetectors),
what
is
the
solution?
There
are
several
promising
approaches
for
these
issues.
50
Silicon
photonicsIn
the
last
few
years,
silicon
has
become
an
important
material
for
integrated
photonics
with
several
breakthroughs
in
the
field
of
high‐speed
optical
modulators,
integrated
germanium
detectors
and
even
light
sources.
High‐contrast
silicon
on
insulator
(SOI)
waveguides
allow
to
miniaturize
photonic
functions,
which
enables
larger‐scale
integration
for
photonics.
The
resulting
ultra‐compact
photonic
integrated
circuits
can
be
used
for
telecom,
datacom,
(bio)‐sensing,
and
biomedical
applications.
The
CMOS
compatible
processing
requirements
allow
the
reuse
of
the
huge
technology
base
for
submicron
mass‐fabrication.
浙江大学光电信息系http://www.imec.be/ScientificReport/SR2008/HTML/1224982.html浙江大学光电信息系51What
is
driving
silicon
photonics?
Data‐com,
super‐computing浙江大学光电信息系52Optical
communication
network
(scaling
down)
Short‐distanceThe
fiber
to
the
home
Long‐haul
(WDM
+
EDFA)New
services:
high‐sp
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年租赁合同(设备)
- 2024年进出口业务委托合同2篇
- 2024年环保公益捐赠合同3篇
- 2025年度美容院商铺租赁及美容院品牌授权合同3篇
- 2024年西餐厅特许经营权出租及转让合同
- 2025年度智能家电产品采购与市场推广合同3篇
- 2024年遗体接送与防腐处理合同3篇
- 教育心理学复习参考试题
- 2025年度旅游景区门卫安全责任书3篇
- 2024绿城物业服务公司战略合作合同
- 苏北四市(徐州、宿迁、淮安、连云港)2025届高三第一次调研考试(一模)语文试卷(含答案)
- 第7课《中华民族一家亲》(第一课时)(说课稿)2024-2025学年统编版道德与法治五年级上册
- GB/T 44888-2024政务服务大厅智能化建设指南
- 人民美术出版社三年级下册书法教案
- 二年级竖式计算题720道(打印排版)
- 公路工程质量检验评定标准(交安部分)
- 整式的乘法和因式分解纯计算题100道
- Consent-Letter-for-Children-Travelling-Abroad
- 玻璃鳞片施工技术规范
- 操作规程管理制度的内容及示例
- 初中物理实验记录表
评论
0/150
提交评论