2025届广东省广州市第二外国语学校高一数学第一学期期末综合测试试题含解析_第1页
2025届广东省广州市第二外国语学校高一数学第一学期期末综合测试试题含解析_第2页
2025届广东省广州市第二外国语学校高一数学第一学期期末综合测试试题含解析_第3页
2025届广东省广州市第二外国语学校高一数学第一学期期末综合测试试题含解析_第4页
2025届广东省广州市第二外国语学校高一数学第一学期期末综合测试试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届广东省广州市第二外国语学校高一数学第一学期期末综合测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,则的值为()A.-4 B.C. D.42.已知向量=(1,2),=(2,x),若⊥,则|2+|=()A. B.4C.5 D.3.已知集合A={x|<2},B={x|log2x>0},则()A. B.A∩B=C.或 D.4.已知均为上连续不断的曲线,根据下表能判断方程有实数解的区间是()x01233.0115.4325.9807.6513.4514.8905.2416.892A. B.C. D.5.某几何体的三视图如图所示(图中小正方形网格的边长为),则该几何体的体积是A. B.C. D.6.已知函数,且,则A.3 B.C.9 D.7.已知角的终边经过点,则().A. B.C. D.8.已知某几何体的三视图如图所示,则该几何体的最长棱为()A.4 B.C. D.29.不等式的解集为,则()A. B.C. D.10.为了预防信息泄露,保证信息的安全传输,在传输过程中都需要对文件加密,有一种加密密钥密码系统,其加密、解密原理为:发送方由明文→密文(加密),接收方由密文→明文.现在加密密钥为,如“4”通过加密后得到密文“2”,若接受方接到密文“”,则解密后得到的明文是()A. B.C.2 D.二、填空题:本大题共6小题,每小题5分,共30分。11.直线关于定点对称的直线方程是_________12.若,,,则的最小值为______.13.某挂钟秒针的端点A到中心点的距离为,秒针均匀地绕点旋转,当时间时,点A与钟面上标12的点重合,A与两点距离地面的高度差与存在函数关系式,则解析式___________,其中,一圈内A与两点距离地面的高度差不低于的时长为___________.14.若函数在上存在零点,则实数的取值范围是________15.如图所示,正方体的棱长为1,B′C∩BC′=O,则AO与A′C′所成角的度数为________.16.已知是定义在正整数集上的严格减函数,它的值域是整数集的一个子集,并且,,则的值为___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,已知为线段的中点,顶点,的坐标分别为,.(Ⅰ)求线段的垂直平分线方程;(Ⅱ)若顶点的坐标为,求垂心的坐标.18.已知函数.(1)当时,求的定义域;(2)若函数只有一个零点,求的取值范围.19.已知.(Ⅰ)若,求的值;(Ⅱ)若为第三象限角,且,求的值.20.已知函数.(1)解不等式;(2)若函数,其中为奇函数,为偶函数,若不等式对任意恒成立,求实数的取值范围.21.如图,在三棱锥A­BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】由题,解得.故选A.2、C【解析】根据求出x的值,再利用向量的运算求出的坐标,最后利用模长公式即可求出答案【详解】因为,所以解得,所以,因此,故选C【点睛】本题主要考查向量的坐标预算以及模长求解,还有就是关于向量垂直的判定与性质3、A【解析】先分别求出集合A和B,再利用交集定义和并集定义能求出结果【详解】由2-x<2得x>-1,所以A={x|x>-1};由log2x>0得x>1,所以B={x|x>1}.所以A∩B={x|x>1}.故选A【点睛】本题考查交集、并集的求法及应用,考查指数对数不等式的解法,是基础题4、C【解析】根据函数零点的存在性定理可以求解.【详解】由表可知,,,令,则均为上连续不断的曲线,所以在上连续不断的曲线,所以,,;所以函数有零点的区间为,即方程有实数解的区间是.故选:C.5、A【解析】利用已知条件,画出几何体的直观图,利用三视图的数据求解几何体的体积即可【详解】由题意可知几何体的直观图如图:是直四棱柱,底面是直角梯形,上底为:1,下底为2,高为2,棱柱的高为2,几何体的体积为:V6故选A【点睛】本题考查几何体的直观图与三视图的关系,考查空间想象能力以及计算能力6、C【解析】利用函数的奇偶性以及已知条件转化求解即可【详解】函数g(x)=ax3+btanx是奇函数,且,因为函数f(x)=ax3+btanx+6(a,b∈R),且,可得=﹣3,则=﹣g()+6=3+6=9故选C【点睛】本题考查函数的奇偶性的应用,函数值的求法,考查计算能力.已知函数解析式求函数值,可以直接将变量直接代入解析式从而得到函数值,直接代入较为繁琐的题目,可以考虑函数的奇偶性的应用,利用部分具有奇偶性的特点进行求解,就如这个题目.7、A【解析】根据三角函数的概念,,可得结果.【详解】因为角终边经过点所以故选:A【点睛】本题主要考查角终边过一点正切值的计算,属基础题.8、B【解析】根据三视图得到几何体的直观图,然后结合图中的数据计算出各棱的长度,进而可得最长棱【详解】由三视图可得,该几何体是如图所示的四棱锥,底面是边长为2的正方形,侧面是边长为2的正三角形,且侧面底面根据图形可得四棱锥中的最长棱为和,结合所给数据可得,所以该四棱锥的最长棱为故选B【点睛】在由三视图还原空间几何体时,要结合三个视图综合考虑,根据三视图表示的规则,空间几何体的可见轮廓线在三视图中为实线、不可见轮廓线在三视图中为虚线.在还原空间几何体实际形状时,一般是以主视图和俯视图为主,结合左视图进行综合考虑.熟悉常见几何体的三视图,能由三视图得到几何体的直观图是解题关键.考查空间想象能力和计算能力9、A【解析】由不等式的解集为,得到是方程的两个根,由根与系数的关系求出,即可得到答案【详解】由题意,可得不等式的解集为,所以是方程的两个根,所以可得,,解得,,所以,故选:A10、A【解析】根据题意中给出的解密密钥为,利用其加密、解密原理,求出的值,解方程即可求解.【详解】由题可知加密密钥为,由已知可得,当时,,所以,解得,故,显然令,即,解得,即故选:A.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】先求出原直线上一个点关于定点的对称点,然后用对称后的直线与原直线平行【详解】在直线上取点,点关于的对称点为过与原直线平行的直线方程为,即为对称后的直线故答案为:12、【解析】利用基本不等式求出即可.【详解】解:若,,则,当且仅当时,取等号则的最小值为.故答案为:.【点睛】本题考查了基本不等式的应用,属于基础题.13、①.②.【解析】先求出经过,秒针转过的圆心角的为,进而表达出函数解析式,利用求出的解析式建立不等式,解出解集,得到答案.【详解】经过,秒针转过的圆心角为,得.由,得,又,故,得,解得:,故一圈内A与两点距离地面的高度差不低于的时长为.故答案为:,14、【解析】分和并结合图象讨论即可【详解】解:令,则有,原命题等价于函数与在上有交点,又因为在上单调递减,且当时,,在上单调递增,当时,作出两函数的图像,则两函数在上必有交点,满足题意;当时,如图所示,只需,解得,即,综上所述实数的取值范围是.故答案为:15、30°【解析】∵A′C′∥AC,∴AO与A′C′所成的角就是∠OAC(或其补角).∵OC⊂平面BB′C′C,AB⊥平面BB′C′C,∴OC⊥AB.又OC⊥OB,AB∩BO=B,∴OC⊥平面ABO.又AO⊂平面ABO,∴OC⊥OA.在Rt△AOC中,,∴∠OAC=30°.即AO与A′C′所成角度数为30°.点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面问题化归为共面问题来解决,具体步骤如下:①平移:平移异面直线中的一条或两条,作出异面直线所成的角;②认定:证明作出的角就是所求异面直线所成的角;③计算:求该角的值,常利用解三角形;④取舍:由异面直线所成的角的取值范围是,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角16、【解析】利用严格单调减函数定义求得值,然后在由区间上整数个数,可确定的值【详解】,根据题意,,又,,所以,即,,在上只有13个整数,因此可得,故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ).【解析】(1)根据中点坐标公式求中点坐标,根据斜率公式求斜率,最后根据点斜式求方程(2)根据垂心为高线的交点,先根据点斜式求两条高线方程,再解方程组求交点坐标,即得垂心的坐标.试题解析:(Ⅰ)∵的中点是,直线的斜率是-3,线段中垂线的斜率是,故线段的垂直平分线方程是,即;(Ⅱ)∵,∴边上的高所在线斜率∵∴边上高所在直线的方程:,即同理∴边上的高所在直线的方程:联立和,得:,∴的垂心为18、(1);(2)【解析】(1)当时,求的解析式,令真数位置大于,解不等式即可求解;(2)由题意可得,整理可得只有一解,分别讨论,时是否符合题意,再分别讨论和有且只有一个是方程①的解,结合定义域列不等式即可求解.【小问1详解】当时,,由,即,因为,所以.故的定义域为.【小问2详解】因为函数只有一个零点,所以关于的方程①的解集中只有一个元素.由,可得,即,所以②,当时,,无意义不符合题意,当,即时,方程②的解为.由(1)得的定义域为,不在的定义域内,不符合题意.当是方程①的解,且不是方程①的解时,解得:,当是方程①的解,且不是方程①的解时,解得:且,无解.综上所述:的取值范围是.19、(Ⅰ);(Ⅱ).【解析】(Ⅰ)由诱导公式化简得,代入即可得解;(Ⅱ)由诱导公式可得,再由同角三角函数的平方关系可得,代入即可得解.【详解】(Ⅰ)由于,又,所以.(Ⅱ)因为,所以.又因为第三象限角,所以,所以.20、(1)(1,3);(2).【解析】(1)设t=2x,利用f(x)>16﹣9×2x,转化不等式为二次不等式,求解即可;(2)利用函数的奇偶性以及函数恒成立,结合对勾函数的图象与性质求解函数的最值,推出结果【详解】解:(1)设t=2x,由f(x)>16﹣9×2x得:t﹣t2>16﹣9t,即t2﹣10t+16<0∴2<t<8,即2<2x<8,∴1<x<3∴不等式的解集为(1,3)(2)由题意得解得.2ag(x)+h(2x)≥0,即,对任意x∈[1,2]恒成立,又x∈[1,2]时,令,在上单调递增,当时,有最大值,所以.【点睛】本题考查函数与方程的综合应用,二次函数的性质,对勾函数的图像与性质以及函数恒成立的转化,考查计算能力21、(1)见解析(2)见解析【解析】(1)先由平面几何知识证明,再由线面平行判定定理得结论;(2)先由面面垂直性质定理得平面,则,再由AB⊥AD及线面垂直判定定理得AD⊥平面ABC,即可得AD⊥AC

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论