2025届湖南省湖南师大附中数学高二上期末学业质量监测试题含解析_第1页
2025届湖南省湖南师大附中数学高二上期末学业质量监测试题含解析_第2页
2025届湖南省湖南师大附中数学高二上期末学业质量监测试题含解析_第3页
2025届湖南省湖南师大附中数学高二上期末学业质量监测试题含解析_第4页
2025届湖南省湖南师大附中数学高二上期末学业质量监测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届湖南省湖南师大附中数学高二上期末学业质量监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,则函数在区间上的最小值为()A. B.C. D.2.在数列中,若,则称为“等方差数列”,下列对“等方差数列”的判断,其中不正确的为()A.若是等方差数列,则是等差数列 B.若是等方差数列,则是等方差数列C.是等方差数列 D.若是等方差数列,则是等方差数列3.在数列中,,,,则()A.2 B.C. D.14.已知点到直线:的距离为1,则等于()A. B.C. D.5.某老师希望调查全校学生平均每天的自习时间.该教师调查了60位学生,发现他们每天的平均自习时间是3.5小时.这里的总体是()A.杨高的全校学生;B.杨高的全校学生的平均每天自习时间;C.所调查的60名学生;D.所调查的60名学生的平均每天自习时间.6.已知函数,则曲线在点处的切线与坐标轴围成的三角形的面积是()A B.C. D.7.在正方体ABCD﹣A1B1C1D1中,E为棱A1B1上一点,且AB=2,若二面角B1﹣BC1﹣E为45°,则四面体BB1C1E的外接球的表面积为()A.π B.12πC.9π D.10π8.已知角的终边经过点,则,的值分别为A., B.,C., D.,9.已知函数,.若存在三个零点,则实数的取值范围是()A. B.C. D.10.已知双曲线:()的离心率为,则的渐近线方程为()A. B.C. D.11.抛物线有如下光学性质:由其焦点射出的光线经抛物线反射后,沿平行于抛物线对称轴的方向射出;反之,平行于抛物线对称轴的入射光线经抛物线反射后必过抛物线的焦点.已知抛物线,O为坐标原点,一条平行于x轴的光线从点射入,经过C上的点A反射后,再经C上另一点B反射后,沿直线射出,经过点N.下列说法正确的是()A.若,则 B.若,则平分C.若,则 D.若,延长AO交直线于点D,则D,B,N三点共线12.直线x﹣y+3=0的倾斜角是()A.30° B.45°C.60° D.150°二、填空题:本题共4小题,每小题5分,共20分。13.过抛物线的焦点的直线交抛物线于点、,且点的横坐标为,过点和抛物线顶点的直线交抛物线的准线于点,则的面积为___________.14.经过两点的双曲线的标准方程是________15.已知空间向量,,则向量在向量上的投影向量的坐标是__________16.已知双曲线的左、右焦点分别为,双曲线左支上点满足,则的面积为_________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆经过点,左焦点为.(Ⅰ)求椭圆的方程;(Ⅱ)若是椭圆的右顶点,过点且斜率为的直线交椭圆于两点,求的面积.18.(12分)如图,渔船甲位于岛屿A的南偏西60°方向的B处,且与岛屿A相距12海里,渔船乙以10海里/小时的速度从岛屿A出发沿正北方向航行,若渔船甲同时从B处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上.(1)求渔船甲的速度;(2)求的值.19.(12分)已知双曲线的左,右焦点为,离心率为.(1)求双曲线C的渐近线方程;(2)过作斜率为k的直线l分别交双曲线的两条渐近线于A,B两点,若,求k的值.20.(12分)已知直线l过点,与两坐标轴的正半轴分别交于A,B两点,O为坐标原点(1)若的面积为,求直线l的方程;(2)求的面积的最小值21.(12分)已知O为坐标原点,点P在抛物线C:上,点F为抛物线C的焦点,记P到直线的距离为d,且.(1)求抛物线C的标准方程;(2)若过点的直线l与抛物线C相切,求直线l的方程.22.(10分)阿基米德(公元前287年---公元前212年,古希腊)不仅是著名的哲学家、物理学家,也是著名的数学家,他利用“逼近法”得到椭圆面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积.在平面直角坐标系中,椭圆的面积等于,且椭圆的焦距为.(1)求椭圆的标准方程;(2)点是轴上的定点,直线与椭圆交于不同的两点,已知A关于轴的对称点为,点关于原点的对称点为,已知三点共线,试探究直线是否过定点.若过定点,求出定点坐标;若不过定点,请说明理由.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据已知条件求得以及,利用导数判断函数的单调性,即可求得函数在区间上的最小值.【详解】因为,故可得,则,又,令,解得,令,解得,故在单调递减,在单调递增,又,故在区间上的最小值为.故选:.2、B【解析】根据等方差数列的定义逐一进行判断即可【详解】选项A中,符合等差数列的定义,所以是等差数列,A正确;选项B中,不是常数,所以不是等方差数列,选项B错误;选项C中,,所以是等方差数列,C正确;选项D中,所以是等方差数列,D正确故选:B3、A【解析】根据题中条件,逐项计算,即可得出结果.【详解】因为,,,所以,因此.故选:A.4、D【解析】利用点到直线的距离公式,即可求得参数的值.【详解】因为点到直线:的距离为1,故可得,整理得,解得.故选:.5、B【解析】由总体的概念可得答案.【详解】某老师希望调查全校学生平均每天的自习时间,该教师调查了60位学生,发现他们每天的平均自习时间是3.5小时,这里的总体是全校学生平均每天的自习时间.故选:B.6、B【解析】根据导数的几何意义,求出切线方程,求出切线和横截距a和纵截距b,面积为【详解】由题意可得,所以,则所求切线方程为令,得;令,得故所求三角形的面积为故选:B7、D【解析】连接交于,可得,利用线面垂直的判定定理可得:平面,于是,可得而为二面角的平面角,再求出四面体的外接球半径,进而利用球的表面积计算公式得出结论【详解】连接交于,则,易知,则平面,所以,从而为二面角的平面角,则.因为,所以,所以四面体的外接球半径故四面体BB1C1E的外接球的表面积为故选:D【点睛】本题考查了正方体的性质、线面垂直的判定与性质定理、二面角的平面角、球的表面积计算公式,考查了推理能力与计算能力,属于中档题8、C【解析】利用任意角的三角函数的定义:,,,代入计算即可得到答案【详解】由于角的终边经过点,则,,(为坐标原点),所以由任意角的三角函数的定义:,.故答案选C【点睛】本题考查任意角的三角函数的定义,解决此类问题的关键是掌握牢记三角函数定义并能够熟练应用,属于基础题9、B【解析】根据题意,当时,有一个零点,进而将问题转化为当时,有两个实数根,再研究函数即可得答案.【详解】解:因为存在三个零点,所以方程有三个实数根,因为当时,由得,解得,有且只有一个实数根,所以当时,有两个实数根,即有两个实数根,所以令,则,所以当时,,单调递增,当时,,单调递减,因为,,,所以的图象如图所示,所以有两个实数根,则故选:B10、A【解析】先根据双曲线的离心率得到,然后由,得,即为所求的渐近线方程,进而可得结果【详解】∵双曲线的离心率,∴又由,得,即双曲线()的渐近线方程为,∴双曲线的渐近线方程为故选:A11、D【解析】根据求出焦点为、点坐标,可得直线的方程与抛物线方程联立得点坐标,由两点间的距离公式求出可判断AC;时可得,.由可判断B;求出点坐标可判断D.【详解】如图,若,则,C的焦点为,因为,所以,直线的方程为,整理得,与抛物线方程联立得,解得或,所以,所以,选项A错误;时,因为,所以.又,,所以不平分,选项B不正确;若,则,C的焦点为,因为,所以,直线的方程为,所以,所以,选项C错误;若,则,C的焦点为,因为,所以,直线的方程为,所以,直线的方程为,延长交直线于点D,所以则,所以D,B,N三点共线,选项D正确;故选:D.12、C【解析】先求斜率,再求倾斜角即可【详解】解:直线的斜截式方程为,∴直线的斜率,∴倾斜角,故选:C【点睛】本题主要考查直线的倾斜角与斜率,属于基础题二、填空题:本题共4小题,每小题5分,共20分。13、##【解析】不妨设点为第一象限内的点,求出点的坐标,可求得直线、的方程,求出点、的坐标,可求得以及点到直线的距离,利用三角形的面积公式可求得的面积.【详解】不妨设点为第一象限内的点,设点,其中,则,可得,即点,抛物线的焦点为,,所以,直线的方程为,联立,解得或,即点,所以,,直线的方程为,抛物线的准线方程为,联立,可得点,点到直线的距离为,因此,.故答案为:.14、【解析】设双曲线的标准方程将点坐标代入求参数,即可确定标准方程.【详解】令,则,可得,令,则,无解.故双曲线的标准方程是.故答案为:.15、【解析】根据投影向量概念求解即可.【详解】因为空间向量,,所以,,所以向量在向量上投影向量为:,故答案为:.16、3【解析】由双曲线方程可得,利用双曲线定义,以及直角三角形的勾股定理可得,由此求得答案.【详解】由双曲线的左、右焦点分别为,双曲线左支上点满足,可得:,则,且,故,所以,故,故答案为:3三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ).【解析】(Ⅰ)由椭圆的定义求出的值,由求出,代入,得到椭圆的方程;(Ⅱ)由点斜式求出直线的方程,设,联立直线与椭圆方程,求出的值,再算出的面积试题解析(Ⅰ)由椭圆的定义得:又,故,∴椭圆的方程为:.(Ⅱ)过的直线方程为,,联立,设,则,∴的面积.点睛:本题主要考查了求椭圆的方程,直线与椭圆相交时弦长的计算等,属于中档题.在(Ⅱ)中,注意的面积的计算公式18、(1)14海里小时;(2).【解析】(1)由题意知,,,.在△中,利用余弦定理求出,进而求出渔船甲的速度.(2)在△中,,,,,由正弦定理,即可解出的值.【小问1详解】(1)依题意,,,,.在△中,由余弦定理,得.解得.故渔船甲的速度为海里小时.即渔船甲的速度为14海里小时.【小问2详解】在△中,因为,,,,由正弦定理,得,即.值为.19、(1)(2)【解析】(1)由离心率可得双曲线的渐近线方程;(2)设,则的中点为,由,可得,然后的方程与双曲线的渐近线方程联立,利用韦达定理可得答案.【小问1详解】设,则,又,所以,得,所以双曲线的渐近线方程为.【小问2详解】由已知直线的倾斜角不是直角,,设,则的中点为,,由,可知,所以,即,因为的方程为,双曲线的渐近线方程可写为,由消去y,得,所以,,所以,因为,所以,即.20、(1)或(2)4【解析】(1)设直线方程为,根据所过的点及面积可得关于的方程组,求出解后可得直线方程,我们也可以设直线,利用面积求出后可得直线方程.(2)结合(1)中直线方程的形式利用基本不等式可求面积的最小值.【小问1详解】法一:(1)设直线,则解得或,所以直线或法二:设直线,,则,则,∴或﹣8所以直线或【小问2详解】法一:∵,∴,∴,此时,∴面积的最小值为4,此时直线法二:∵,∴,此时,∴面积的最小值为4,此时直线21、(1);(2)或.【解析】(1)根据抛物线的定义进行求解即可;(2)根据直线l是否存在斜率分类讨论,结合一元二次方程根的判别式进行求解即可.【小问1详解】因为,所以P到直线的距离等于,所以抛物线C的准线为,所以,,所以抛物线C的标准方程为;【小问2详解】当直线l的斜率不存在时,方程为,此时直线l恰与抛物线C相切当直线l的斜率存在时,设其方程为,联立方程,得若,显然不合题意;若,则,解得此时直线l的方程为综上,直线l

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论