版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
济宁市重点中学2025届高一上数学期末统考试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若||=1,||=2,||=,则与的夹角的余弦值为()A. B.C. D.2.若定义运算,则函数的值域是()A.(-∞,+∞) B.[1,+∞)C.(0.+∞) D.(0,1]3.下列所给四个图象中,与所给3件事吻合最好的顺序为()(1)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再去上学;(2)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间;(3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速A.①②④ B.④②③C.①②③ D.④①②4.已知函数与在下列区间内同为单调递增的是()A. B.C. D.5.已知集合,,则A.或 B.或C. D.或6.若,,则下列结论正确的是()A. B.C. D.a,b大小不确定7.已知,,,则()A. B.C. D.8.已知实数集为,集合,,则A. B.C. D.9.圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面的半径为()A.7 B.6C.5 D.310.已知直线,,若,则实数的值为A.8 B.2C. D.-2二、填空题:本大题共6小题,每小题5分,共30分。11.一个几何体的三视图及其尺寸(单位:cm),如右图所示,则该几何体的侧面积为cm12.设集合,,则______13.幂函数f(x)的图象过点(4,2),则f(x)的解析式是______14.如图,已知圆柱的轴截面是矩形,,是圆柱下底面弧的中点,是圆柱上底面弧的中点,那么异面直线与所成角的正切值为__________15.函数f(x)=log2(x2-5),则f(3)=______16.已知函数对任意不相等的实数,,都有,则的取值范围为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知.(1)化简,并求的值;(2)若,求的值18.已知函数,.(1)求函数图象的对称轴的方程;(2)当时,求函数的值域;(3)设,存在集合,当且仅当实数,且在时,不等式恒成立.若在(2)的条件下,恒有(其中),求实数的取值范围.19.已知函数为偶函数,当时,,(a为常数).(1)当x<0时,求的解析式:(2)设函数在[0,5]上的最大值为,求的表达式;(3)对于(2)中的,试求满足的所有实数成的取值集合.20.已知的顶点,边上的中线所在的直线方程为,边上的高所在的直线方程为.(1)求点的坐标;(2)求所在直线的方程.21.已知是定义在上的函数,满足.(1)若,求;(2)求证:的周期为4;(3)当时,,求在时的解析式.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】由题意把||两边平方,结合数量积的定义可得【详解】||=1,||=2,与的夹角θ,∴||27,∴12+2×1×2×cosθ+22=7,解得cosθ故选:B2、D【解析】作出函数的图像,结合图像即可得出结论.【详解】由题意分析得:取函数与中的较小的值,则,如图所示(实线部分):由图可知:函数的值域为:.故选:D.【点睛】本题主要考查了指数函数的性质和应用.考查了数形结合思想.属于较易题.3、D【解析】根据回家后,离家的距离又变为可判断(1);由途中遇到一次交通堵塞,可判断中间有一段函数值没有发生变化;由为了赶时间开始加速,可判断函数的图像上升的速度越来越快;【详解】离开家不久发现自己把作业本忘在家里,回到家里,这时离家的距离为,故应先选图像(4);途中遇到一次交通堵塞,这这段时间与家的距离必为一定值,故应选图像(1);后来为了赶时间开始加速,则可知图像上升的速度越来越快,故应选图像(2);故选:D【点睛】本题主要考查函数图象的识别,解题的关键是理解题干中表述的变化情况,属于基础题.4、D【解析】根据正余弦函数的单调性,即可得到结果.【详解】由正弦函数的单调性可知,函数在上单调递增;由余弦函数的单调性可知,函数在上单调递增;所以函数与在下列区间内同为单调递增的是.故选:D.5、A【解析】进行交集、补集的运算即可.【详解】;,或故选A.【点睛】考查描述法的定义,以及交集、补集的运算.6、B【解析】根据作差比较法可得解.【详解】解:因为,所以故选:B.7、A【解析】比较a、b、c与中间值0和1的大小即可﹒【详解】,,,∴﹒故选:A﹒8、C【解析】分析:先求出,再根据集合的交集运算,即可求解结果.详解:由题意,集合,所以,又由集合,所以,故选C.点睛:本题主要考查了集合的混合运算,熟练掌握集合的交集、并集、补集的运算是解答的关键,着重考查了推理与运算能力.9、A【解析】设圆台上底面半径为,由圆台侧面积公式列出方程,求解即可得解.【详解】设圆台上底面半径为,由题意下底面半径为,母线长,所以,解得.故选:A.【点睛】本题考查了圆台侧面积公式的应用,属于基础题.10、A【解析】利用两条直线平行的充要条件求解【详解】:∵直线l1:2x+y-2=0,l2:ax+4y+1=0,l1∥l2,∴,解得a=8故选A.【点睛】】本题考查实数值的求法,是基础题,解题时要认真审题,注意直线平行的性质的灵活运用二、填空题:本大题共6小题,每小题5分,共30分。11、80【解析】图复原的几何体是正四棱锥,斜高是5cm,底面边长是8cm,侧面积为×4×8×5=80(cm2)考点:三视图求面积.点评:本题考查由三视图求几何体的侧面积12、【解析】联立方程组,求出交点坐标,即可得到答案【详解】解方程组,得或.故答案为:13、【解析】根据幂函数的概念设f(x)=xα,将点的坐标代入即可求得α值,从而求得函数解析式【详解】设f(x)=xα,∵幂函数y=f(x)的图象过点(4,2),∴4α=2∴α=这个函数解析式为故答案为【点睛】本题主要考查了待定系数法求幂函数解析式、指数方程解法等知识,属于基础题14、【解析】取圆柱下底面弧AB的另一中点D,连接C1D,AD,因为C是圆柱下底面弧AB中点,所以AD∥BC,所以直线AC1与AD所成角等于异面直线AC1与BC所成角,因为C1是圆柱上底面弧A1B1的中点,所以C1D⊥圆柱下底面,所以C1D⊥AD,因为圆柱的轴截面ABB1A1是矩形,AA1=2AB所以C1D=2AD,所以直线AC1与AD所成角的正切值为2,所以异面直线AC1与BC所成角的正切值为2故答案为:2.点睛:求两条异面直线所成角关键是作为这两条异面直线所成角,作两条异面直线所成角的方法是:将其中一条一条直线平移与另一条相交相交或是将两条异面直线同时平移到某个位置使他们相交,然后再同一平面内求相交直线所成角,值得注意的是:平移后相交所得的角必须容易算出,因此平移时要求选择恰当位置.15、2【解析】利用对数性质及运算法则直接求解【详解】∵函数f(x)=log2(x2-5),∴f(3)=log2(9-5)=log24=2故答案为2【点睛】本题考查函数值的求法,考查函数性质等基础知识,考查运算求解能力,是基础题16、【解析】首先根据题意得到在上为减函数,从而得到,再解不等式组即可.【详解】由题知:对任意不相等的实数,,都有,所以在上为减函数,故,解得:.故答案为:【点睛】本题主要考查分段函数的单调性,同时考查了对数函数的单调性,属于简单题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),(2)【解析】(1)利用三角函数诱导公式将化简,将代入求值即可;(2)利用将变形为,继而变形为,代入求值即可.小问1详解】则【小问2详解】由(1)知,则18、(1);(2);(3).【解析】(1)利用两角和的正弦公式化函数为一个角的一个三角函数形式,然后结合正弦函数的对称性得解;(2)令,换元,化函数为的二次函数,求出,由此可值域;(3)由题意利用分离参数法、换元法、基本不等式先求出集合,根据(2)中范围得出的范围,再由可得的范围【详解】解:(1)令,得所以函数图象的对称轴方程为:(2)由(1)知,,当时,,∴,,即令,则,,由得,∴当时,有最小值,当时,有最大值1,所以当时,函数的值域为(3)当,不等式恒成立,因为时,,,所以,令,则,所以又,当且仅当即时取等号而,所以,即,所以又由(2)知,,当时,,所以,要使恒成立,只须使,故的取值范围是【点睛】关键点点睛:本题考查两角和的正弦公式,三角函数的对称性,换元法求三角函数的值域,考查不等式恒成立问题,在同时出现和的函数中常常设换元转化为二次函数,再结合二次函数性质求解.不等式恒成立问题仍然采用分离参数转化为求函数的最值19、(1)f(x)=x2-2ax+1;(2);(3){m|或}【解析】(1)设x<0,则-x>0,所以f(-x)=(-x)2+2a(-x)+1=x2-2ax+1,再根据函数的奇偶性化简即得函数的解析式.(2)对a分两种情况讨论,利用二次函数的图像和性质即得的表达式.(3)由题得或,解不等式组即得解.【详解】(1)设x<0,则-x>0,所以f(-x)=(-x)2+2a(-x)+1=x2-2ax+1.又因为f(x)为偶函数,所以f(-x)=f(x),所以当x<0时,f(x)=x2-2ax+1.(2)当x[0,5],f(x)=x2+2ax+1,对称轴x=-a,①当-a≥,即a≤-时,g(a)=f(0)=1;②当-a<,即a>-时,g(a)=f(5)=10a+26综合以上.(3)由(2)知,当a≤-时,g(a)为常函数,当a>-时,g(a)为一次函数且为增函数因为g(8m)=g(),所以有或,解得或,即m的取值集合为{m|或}【点睛】本题主要考查奇偶函数的解析式的求法,考查函数的最值的求法,考查函数的图像和性质,意在考查学生对这些知识的掌握水平和分析推理能力.20、(1)(2)【解析】(1)根据AC和BH的垂直关系可得到直线的方程为,再代入点A的坐标可得到直线的方程为,联立CM直线可得到C点坐标;(2)设,则,将两个点分别带入BH和CM即可求出,结合第一问得到BC的方程解析:(1)因为,的方程为,不妨设直线的方程为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年物业绿化管理外包合同
- 起床了小班主题教案
- 广告招商合同范本
- 寄宿制工作计划3篇
- 世说新语读书笔记范文800字左右
- 励志题目演讲稿300字10篇
- 创新网站建设方案5篇
- 《冬天》中班教案
- 2024年度工作总结
- 2025年系列活性精脱硫剂合作协议书
- 语言学纲要(学习指导修订版)
- (2024年)常见传染病诊断国家标准培训(完整版)
- 2023老年大学教师职责及选聘管理办法
- 标准普尔家庭资产象限图讲解(四大账户)通用课件
- 干部基本信息审核认定表
- 民间文学概论课件
- 响应面分析软件DesignExpert使用教程
- 2023-2024学年广东省深圳市重点中学高考适应性考试历史试卷含解析
- 麻醉药品管理培训课件
- 中建履约过程风险发函时点提示及函件指引(2023年)
- 不锈钢管理制度
评论
0/150
提交评论