版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届咸阳市重点中学高二上数学期末达标检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知椭圆的左焦点为,右顶点为,点在椭圆上,且轴,直线交轴于点.若,则椭圆的离心率是A. B.C. D.2.已知,表示两条不同的直线,表示平面.下列说法正确的是A.若,,则B.若,,则C.若,,则D.若,,则3.已知点是抛物线的焦点,点为抛物线上的任意一点,为平面上点,则的最小值为A.3 B.2C.4 D.4.过点(-2,1)的直线中,被圆x2+y2-2x+4y=0截得的弦最长的直线的方程是()A.x+y+1=0 B.x+y-1=0C.x-y+1=0 D.x-y-1=05.在等差数列中,,且构成等比数列,则公差等于()A.0 B.3C. D.0或36.已知椭圆的两个焦点分别为,且平行于轴的直线与椭圆交于两点,那么的值为()A. B.C. D.7.在棱长为1的正四面体中,点满足,点满足,当和的长度都为最短时,的值是()A. B.C. D.8.函数的导数记为,则等于()A. B.C. D.9.抛掷一枚质地均匀的骰子两次,记{两次的点数均为奇数},{两次的点数之和为8},则()A. B.C. D.10.在直三棱柱中,,且,点是棱上的动点,则点到平面距离的最大值是()A. B.C.2 D.11.椭圆的离心率为()A. B.C. D.12.若正方体ABCDA1B1C1D1的棱长为1,则直线A1C1到平面ACD1的距离为()A.1 B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知直线与双曲线无公共点,则双曲线离心率的取值范围是____14.在数列中,,,则数列中最大项的数值为__________15.若数列满足,,设,类比课本中推导等比数列前项和公式的方法,可求得______________16.设数列满足,则an=________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)求函数的单调区间;(2)当时,求函数的值域.18.(12分)已知:,,:,,且为真命题,求实数的取值范围.19.(12分)从①;②;③这三个条件中任选一个,补充在下面问题中,并作答设等差数列的前n项和为,,______;设数列的前n项和为,(1)求数列和的通项公式;(2)求数列的前项和注:作答前请先指明所选条件,如果选择多个条件分别解答,按第一个解答计分20.(12分)已知数列为等差数列,,数列满足,且(1)求的通项公式;(2)设,记数列的前项和为,求证:21.(12分)已知,p:,q:(1)若p是q的充分不必要条件,求实数m的取值范围;(2)若,“p或q”为真命题,“p且q”为假命题,求实数x的取值范围22.(10分)已知函数,.(1)令,求函数的零点;(2)令,求函数的最小值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由于BF⊥x轴,故,设,由得,选D.考点:椭圆的简单性质2、B【解析】A.运用线面平行的性质,结合线线的位置关系,即可判断;B.运用线面垂直的性质,即可判断;C.运用线面垂直的性质,结合线线垂直和线面平行的位置即可判断;D.运用线面平行的性质和线面垂直的判定,即可判断【详解】A.若m∥α,n∥α,则m,n相交或平行或异面,故A错;B.若m⊥α,,由线面垂直的性质定理可知,故B正确;C.若m⊥α,m⊥n,则n∥α或n⊂α,故C错;D.若m∥α,m⊥n,则n∥α或n⊂α或n⊥α,故D错故选B【点睛】本题考查空间直线与平面的位置关系,考查直线与平面的平行、垂直的判断与性质,记熟定理是解题的关键,注意观察空间的直线与平面的模型3、A【解析】作垂直准线于点,根据抛物线的定义,得到,当三点共线时,的值最小,进而可得出结果.【详解】如图,作垂直准线于点,由题意可得,显然,当三点共线时,的值最小;因为,,准线,所以当三点共线时,,所以.故选A【点睛】本题主要考查抛物线上任一点到两定点距离的和的最值问题,熟记抛物线的定义与性质即可,属于常考题型.4、A【解析】当直线被圆截得的最弦长最大时,直线要经过圆心,即圆心在直线上,然后根据两点式方程可得所求【详解】由题意得,圆的方程为,∴圆心坐标为∵直线被圆截得的弦长最大,∴直线过圆心,又直线过点(-2,1),所以所求直线的方程为,即故选:A5、D【解析】根据,且构成等比数列,利用“”求解.【详解】设等差数列的公差为d,因为,且构成等比数列,所以,解得,故选:D6、A【解析】根据椭圆的方程求出,再由椭圆的对称性及定义求解即可.【详解】由椭圆的对称性可知,,所以,又椭圆方程为,所以,解得,所以,故选:A7、A【解析】根据给定条件确定点M,N的位置,再借助空间向量数量积计算作答.【详解】因,则,即,而,则共面,点M在平面内,又,即,于是得点N在直线上,棱长为1的正四面体中,当长最短时,点M是点A在平面上的射影,即正的中心,因此,,当长最短时,点N是点D在直线AC上的射影,即正边AC的中点,,而,,所以.故选:A8、D【解析】求导后代入即可.【详解】,.故选:D.9、B【解析】利用条件概率公式进行求解.【详解】,其中表示:两次点数均为奇数,且两次点数之和为8,共有两种情况,即,故,而,所以,故选:B10、D【解析】建立空间直角坐标系,设出点的坐标,运用点到平面的距离公式,求出点到平面距离的最大值.【详解】解:以为原点,分别以,,所在直线为,,轴建立如图所示的空间直角坐标第,则,,,设点,故,,.设设平面的法向量为,则即,取,则.所以点到平面距离.当,即时,距离有最大值为.故选:D.【点睛】本题考查空间内点到面的距离最值问题,属于中档题.11、A【解析】由椭圆标准方程求得,再计算出后可得离心率【详解】在椭圆中,,,,因此,该椭圆的离心率为.故选:A.【点睛】本题考查求椭圆的离心率,根据椭圆标准方程求出即可12、B【解析】先证明点A1到平面ACD1的距离即为直线A1C1到平面ACD1的距离,再建立空间直角坐标系,利用向量法求解.【详解】因为平面平面,所以A1C1//平面ACD1,则点A1到平面ACD1的距离即为直线A1C1到平面ACD1的距离.建立如图所示的空间直角坐标系,易知=(0,0,1),由题得平面,所以平面,所以,同理,因为平面,所以平面,所以是平面一个法向量,所以平面ACD1的一个法向量为=(1,1,1),故所求的距离为.故选:B【点睛】方法点睛:求点到平面的距离常用的方法有:(1)几何法(找作证指求);(2)向量法;(3)等体积法.要根据已知条件灵活选择方法求解.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】联立直线得,由无公共点得,进而得,即可求出离心率的取值范围.【详解】联立直线与双曲线可得,整理得,显然,由方程无解可得,即,则,,又离心率大于1,故离心率的取值范围是.故答案为:.14、【解析】用累加法求出通项,再由通项表达式确定最大项.【详解】当时,,所以数列中最大项的数值为故答案为:15、n【解析】先对两边同乘以4,再相加,化简整理即可得出结果.【详解】由①得:②所以①②得:,所以,,故答案为【点睛】本题主要考查类比推理的思想,结合错位相减法思想即可求解,属于基础题型.16、【解析】先由题意得时,,再作差得,验证时也满足【详解】①当时,;当时,②①②得,当也成立.即故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)单调递增区间(−∞,−1)和(4,+∞),单调递减区间(−1,4)(2)【解析】(1)求出,令,由导数的正负即可得到函数f(x)的单调递增区间和递减区间;(2)求出函数在区间中的单调性,求出极大值和极小值以及区间端点的函数值,比较大小即可得到答案【小问1详解】由函数得,令,解得x<−1或x>4,;令,解得−1<x<4,故函数f(x)的单调递增区间为(−∞,−1)和(4,+∞),单调递减区间为(−1,4);【小问2详解】由(1)可知,当x∈[−3,−1)时,,f(x)单调递增,当x∈(−1,4)时,,f(x)单调递减,当x∈(4,6]时,,f(x)单调递增,所以当x=−1时,函数f(x)取得极大值f(−1)=,当x=4时,函数f(x)取得极小值f(4)=,又,所以当x∈[−3,6]时,函数f(x)的值域为18、【解析】由,为真,可得对任意的恒成立,从而分和求出实数的取值范围,再由,,可得关于的方程有实根,则有,从而可求出实数的取值范围,然后求交集可得结果【详解】解:可化为.若:,为真,则对任意的恒成立.当时,不等式可化为,显然不恒成立,当时,有且,所以.①若:,为真,则关于的方程有实根,所以,即,所以或.②又为真命题,故,均为真命题.所以由①②可得的取值范围为.19、(1)条件选择见解析,,(2)【解析】(1)设数列的首项为,公差为d,选①由求解;选②由求解;选③由求解;则,由,利用数列通项与前n项和公式求解;(2)易知,再利用错位相减法求解.【小问1详解】解:设数列的首项为,公差为d,选①得,则,选②得,则,选③得,则,所以数列的通项公式为因为,所以当时,,则当时,,则,所以是以首项为2,公比为2的等比数列,所以【小问2详解】因为,所以数列的前n项和①②①-②得∴,则20、(1);(2)证明见解析.【解析】(1)求出的值,可求得等差数列的公差,进而可求得数列的通项公式,再由前项和与通项的关系可求得的表达式,可求得,然后对是否满足在时的表达式进行检验,综合可得出数列的通项公式;(2)求得,利用裂项求和法可求得的表达式,利用不等式的性质和数列的单调性可证得所证不等式成立.【小问1详解】解:因为,,所以,因为,,所以,设数列公差为,则,所以,当时,由,可得,所以,所以,因为满足,所以,对任意的,【小问2详解】证明:因为,所以,因为,所以,因为,所以,故数列单调递增,当时,,所以21、(1)(2)或【解析】(1)根据命题对应的集合是命题对应的集合的真子集列式解得结果即可得解;(2)“p或q”为真命题,“p且q”为假命题,等价于与一真一假,分两种情况列式可得结果.【详解】(1)因为p:对应的集合为,q:对应的集合为,且p是q的充分不必要条件,所以,所以,解得.(2),当时,,因为“p或q”为真命题,“p且q”为假命题,所以与一真一假,当真时,假,所以,此不等式组无解;当真时,假,所以,解得或.综上所述:实数x的取值范围是或.【点睛】结论点睛:本题考查由充分不必要条件求参数取值范围,一般可根据如下规则转化:(1)若是的必要不充分条件,则对应集合是对应集合的真子集;(2)是的充分不必要条件,则对应集合是对应集合的真子集;(3)是的充分必要条件,则对应集合与对应集合相等;(4)是的既不充分又不必要条件,对的集合与对应集合互不包含22、(1)答案见解析(2)答案见解析【解析】(1)函数零点的个数,就是方程的解的个数,显然是方程的一个解,再对a分类讨论,即得函数的零点;(2)令,可得,得,再对二次函数的对称轴分三种情况讨论得解.【详解】(1)由,可知函数零点的个数,就是方程的解的个数,显然是方程的一个解;当时,方程可化为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024幼儿教育机构教师劳动合同范本3篇
- 2024年防火门质量保障体系合同
- 2024年高端汽车零部件技术保密与全球销售代理合同3篇
- 2024私人住宅施工项目协议范本版B版
- 营销策划方案模板合集五篇(可编辑)
- 2025年度金融科技解决方案合同3篇
- 月考分析发言稿(15篇)
- 2025年度厂区食堂承包合同:绿色环保食材采购协议3篇
- 2024年铝制品供货条款
- 郑州信息工程职业学院《燃烧理论》2023-2024学年第一学期期末试卷
- 排水管道疏通、清淤、检测、修复方案
- 安徽省合肥中学2025届高三第一次模拟考试数学试卷含解析
- 2024年白山客运资格证题库及答案
- 糖尿病药物治疗分类
- 2024年时政热点知识竞赛试卷及答案(共四套)
- 除颤仪使用护理查房
- 高速公路机电系统培训
- 220kV耐张线夹检测报告
- 2024年T电梯修理考试题库附答案
- 山东虚拟电厂商业模式介绍
- 2024年邮政系统招聘考试-邮政营业员考试近5年真题集锦(频考类试题)带答案
评论
0/150
提交评论