版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第5章
新型耦合器件与原理II:器件与结构集成光电子器件及设计2Outline
Structures
and
devices
for
coupling
Butt‐coupling;
Vertical
coupling;
Evanescent
coupling;
Mode
coupling/conversion;
31.
Butt‐coupling
Butt‐coupler
between
a
fiber
and
a
SOI
nanowire
Multimode
interference
(MMI)
couplers.
Vertical
direction
(μm)Vertical
direction
(μm)4Horizontal
direction
(μm)标准光纤和波导在端面耦合时模式失配损耗是插入损耗的主要因素;利用光纤和波导模场的重叠积分可以得到两者耦合时的损耗;改变波导的几何尺寸,从而改变波导的模场分布,可以使波导的模场和光纤的模场达到较好的耦合。f
(x,=∫∫Er(x,y)
⋅Enor*y)dxdyf
f
(x,f
(x,
∫∫Er(x,y)
⋅Enor*y)dxdy∫∫Enor(x,y)
⋅Enor*y)dxdyc0
=
wco=500nm,
hco=300nm,
hcl=2μm
Horizontal
direction
(μm)wco=6μm,
hco=6μm,Δ≈0.7%1.1
Butt‐coupler
between
a
fiber
and
a
SOI
nanowire
Coupling
coefficient5Butt‐coupling:
mode
converters
Lateral
Tapers;
Vertical
Tapers;
Combined
vertical
&
lateral
taper.
Lots
of
work
has
been
done
for
III‐V
PICs!6Lateral
TapersIEEE
JSTQE,
3(6):
1308‐1320,
19977Vertical
TapersIEEE
JSTQE,
3(6):
1308‐1320,
19978Combined
vertical
&
lateral
taperIEEE
JSTQE,
3(6):
1308‐1320,
19979Taper
fabrication
methods
based
on
dry
etching(c)
Shadow
masked
RIE.(a)
Oxide
shadow
technique.
(b)
Direct
shadow
etching10Mode
converters
in
silicon
photonics
for
the
fiber‐coupling
Dual
grating-assisted
directional
coupler.G.Z.
Masanovic,
et
al.
IEE
Proc.-Optoelectron.,
152(1),
2005.
NTT
Microsystem
Integration
Lab.IEEE
J
Select.
Top.
Qutant.
Electron.
11(1),
2005hLtopLbtwrHwcohcowtpxyzSilicon
NanotaperVilson
R.
Almeida,
Roberto
R.
Panepucci,
and
Michal
Lipson,
"Nanotaper
for
compact
mode
conversion,"
Opt.
Lett.
28,
1112hwSipolymerSiO2
h=250nmw=100nm
h=
350nmw=100nm
h=500nmw=100nmw=50nmw=50nmw=50nmInverse
taperNarrow
tip
is
needed.13Ultra‐low‐loss
inverted
taper
coupler
w=450
nm
<
15
nm
(a
thermal
oxidation
process)IL
of
each
inverted
taper
coupler:(1)
~0.36
dB
(TM);
(2)
~
0.66
dB
(TE)
M.
Pu,
et
al.
Optics
Communications,
283(19):
3678–3682,
2010.
y
(μm)y
(μm)y
(μm)y
(μm)y
(μm)y
(μm)Daoxin
Dai,
et
al.
JLT,
24(6):
2428‐2433,
2006.14x
(μm)z=0x
(μm)z=200μmx
(μm)z=400μmminor
peakx
(μm)z=800μmx
(μm)z=600μmx
(μm)y=–(H–h)hLtopLbtwrHBi‐level
mode
converter
wco
hcowtpxyz151.2.
MMI
couplers
由输入/输出波导、多模干涉区组成;
与方向耦合器、Y分支、星型耦合器等相比,具有结构紧凑、易于制作、损耗小、制作容差性好、偏振相关性小等优点;
已经在功分器、光开关、上下路器、波分复用器件、环形激光器等器件中得到了广泛应用。z]v(v+2)π
3LπE(x,z)
=∑cνϕν
(x)exp[−
j
νLucas
B.
Soldano
and
Erik
C.
M.
Pennings.
Optical
multi‐mode
interference
devices
based
on
self‐imaging:
principles
and
applications.
J.
Lightwave
Technol.
13(4):
615‐627,
1995
(cited
1171
times).
M.
Bachmann,
P.
A.
Besse,
and
H.
Melchior,
"General
self‐imaging
properties
in
N
×
N
multimode
interference
couplers
16
MMI耦合器‐自成像原理
•
对于输入场E(x),可将其分解成多模区所有模场的加权和(正交完备基
函数)
E(x,0)
=∑cνϕν
(x)
ν加权系数
cν
=
2
传播
常数
则在多模区传输距离z
后的场可表示为173Lπ
将模场分为两部分:奇模与偶模
Ei(x)
=
Ee(x)+
Eo(x)(a)
当
L=3Lπ时
各个模式的相位:
Φ3Lπ
={0,π,0,π,L}E3Lπ
(x)
=
Ee(x)−
Eo(x)
=
Ee(−x)+
Eo(−x)
=
Ein(−x)6LπE6Lπ
(x)
=
Ee(x)+
Eo(x)
=
Ein(x)•
(b)
当
L=6Lπ时
各个模式的相位:
Φ6Lπ
={0,0,0,0,L}镜像自成像z]v(v+2)π
3LπE(x,z)
=∑cνϕν
(x)exp[−
j
νE32(x)
=
Ee
o(x)
=Ei(x)e−
j
4π
+
Ei(−x)e
j
4π18{}1
11
2(x)−
jE3/2Lc1×2
splitterMMI耦合器‐Mode
Propagation
Analysis
(MPA)
•
(c)
当
L=3/2Lπ时
⎧
3
3
⎫
2
⎩
2
2
⎭19Self‐imaging
in
an
MMI
section20
三种输入方式(a)
一般干涉模式(General
Interference);(b)
限制干涉模式(Restricted
Interference);(c)
对称干涉模式(Symmetric
Interference);x
=±WMMI
/6x
=0(a)(b)(c)21Summary
for
the
self‐imaging
at
MMI
sections22Tapered
MMI
couplers
2×2
optical
coupler:
for
the
coupling
between
microring
and
the
access
optical
waveguides,
also
for
Mach-Zehnder
Interferometer
(MZI)
filter.zxw1w2L
θGw(z)zxw1LGTapering
the
MMI
section
small
MMI
coupler23How
to
design
of
2×2
tapered
MMI
couplersθzxw1w2LGw(z)To
find
the
exact
MMI
length
L
for
good
self-imaging,
one
usually
hasto
implement
a
series
of
numerical
simulations
(e.g.,
BPM
simulations)in
which
the
length
L
is
scanned.
Time-consumed.The
effective
index∆φ(L)w1=1.4μm24Our
design
method
for
Tapered
MMI
coupler
L
Δϕ(L)
=ϕ0
−ϕ1
=∫{neff0[w(z')]−neff1[w(z')]}k0dz'
0where
n0eff(w)=∑aiwi,
n1eff(w)=∑biwi.02682.33.1
32.92.82.72.62.52.4
4wMMI
(μm)Find
the
solution
of
∆φ(L)=∆φ0L.e.g.,
∆φ0=3π/N
for
a
GI-type
N-fold
selfimaging.
Daoxin
Dai,
Sailing
He.
Appl.
Opt.,
47(1):
38‐44,
2008.
4610122
2765438TE
8L
(μm)
w2=1.0μm∆φ0=3π/2w2=1.2μm
w2=2.0μmneff0
neff1
Obtained
by
the
FDM
mode‐solver
w20(μm)L
MMI(μm)25Realization
of
polarization‐sensitivity
by
tapering
MMI
sectionDaoxin
Dai,
and
Sailing
He.
IEEE
Photon.
Technol.
Lett.,
20(8):
599‐601,
2008.
zxw1w2L
θGw(z)11.41.82.211.5233.54
2.5w
1(μm)8.59.510.511.5To
make
LMMI_TE=LMMI_TM(a)(b)26MMI应用‐功分器1xN
power
splitter2x2
couplerRing
resonatorx(
μ
m)Output
power
from
two
ports
(dB)Output
power
from
two
ports
(dB)x(
μ
m)1310nm1550nmWMMIPort1zxPort21310nmPort31550nm通过选取合适的MMI宽度与长度实现1310nm与1550nm信道的分离。
LMMI
=
n⋅Lπ
(1310)
=
(n+1)⋅Lπ
(1550)MMI应用:1310/1550
nm
波分复用器
结构示意图0300400-10
-5050100300400
10-10
-50510
200z
(μm)
(c)
LMMITE偏振,
@1310nm
100
200
z
(μm)
(a)TE偏振,
@1550nm1330-30
1290-25-15-20-10-501300
1310
1320
Wavelength
(nm)
(a)1575-30
1525-25-15-20-10-501537
1550
1567
Wavelength
(nm)
(b)
27Port3Port2Port2Port3TETMTETMx
(μm)
x
(μm)28z
(μm)
(b)
TE2000
1000
0
(a)
TMwMMI1
MMI
#1
wMMI2
MMI
#2TE/TMTMTE
MMI应用:偏振分束器(PBS)传统方法:通过选取合适的MMI宽度与长度实现TE与TM的分离。
新方法:A
compact
design
with
cascaded
MMI
sectionsYuqing
Jiao,
et
al.
IEEE
Photonics
Technology
Letters,
,
21(20):
1538‐1540,
2009.
292.
Vertical
coupling
(with
grating
couplers)W.
Bogaerts,
et
al.
J.
Lightwave
Technol.
23(1),
2005Polarization-dependent,
wavelength-sensitive30Principle
of
grating
couplersBragg
condition31How
to
improve
the
coupling
efficiency?32D.
Vermeulen,
et
al,
"High‐efficiency
fiber‐to‐chip
grating
couplers
realized
using
an
advanced
CMOS‐compatible
Silicon‐On‐Insulator
platform,"
Opt.
Express
18,
18278‐18283
(2010)
Improved
designs
for
grating
couplers
using
a
poly‐silicon
overlay
−1.6dB
and
a
3dB
bandwidth
of
80nmChirped
grating
coupler
higher
efficiencyY.
Tang,
et
al.
Opt.
Lett.,
35(8):1290‐1292,
2010.
3334Directionality
D
~
tbufw=200nm,
t=260nm,
d=90nm,
Λ=629nm,
n1
=
n3
=
1.46,
n2
=
3.4835Reduce
the
mode
matching
loss.
With
Bragg
grating
underneath
to
reduce
the
leakage
to
the
substrate.
Chirp
grating
coupler
+
Bragg
grating36http://www.iph.rwth‐aachen.de/?page_id=40Ultra‐compact
curved
grating
coupler37
2D
grating
coupler
for
coupling,
polarization‐splitting/rotatingW.
Bogaerts,
et
al.
Optics
Express,
15(4):
1567‐1578,
2007.
38Application
of
2D
grating
couplersW.
Bogaerts,
et
al.
Optics
Express,
15(4):
1567‐1578,
2007.
39
High
coupling
efficiency,
short
coupling
length;
Mode
converter;
Q
Li,
et
al.
Opt.
Lett.
35,
3153‐3155
(2010)
3.
Evanescent
coupling:
asymmetrical
directional
coupler
Efficient
coupling
between
different
types
of
optical
waveguides
SHP
waveguides
and
SOI
nanowires40Evanescent
coupling:
directional
coupler
Symmetrical
directional
coupler;
Asymmetrical
directional
coupler;
Input
Section
Output
Section
1234A0A
Coupling
region
BB0sD
Input
Section
Output
Section
1234A0A
Coupling
region
BB0sD
Phase
matching
condition!41w1hco1wgw2WG
IWG
IIhco2TM0Input
Asymmetricalcoupling
systemThruCrossTE0SiO2
TE0,TM0APBS3.1
Application
of
asymmetrical
couplers
II
PBSs:
one
polarization
is
coupled
while
the
other
one
does
not.
42TETM
Lcupl=2*Lπ_TE=1*Lπ_TMDrawback:
Small
fabrication
tolerance,
Might
be
pretty
long.
Basic
principle
for
DC‐based
PBSLcupl=p*LπTE=q*LπTM,
where
p,
q
are
integers,
and
p=q+k,
k=±1,
3,
5,
…
Improved
design:
Idea
coupling
system
for
PBS:TMpolarizationhasstrongcoupling,whilenocouplingforTE.Lcupl=1*Lπ_TM
≈0*Lπ_TE!
PBS
based
on
an
asymmetrical
DC.neff431.451.701.952.702.452.202.950.30.60.91.21.5
Waveguide
width
(μm)Daoxin
Dai,
JLT,
30(20):
3281‐3287
(2012).
TE0
TE1w2w1hco=220nmTM0TM1TE3w1wgw2TE0TM1TE0TM0TM1
PBS
based
on
an
asymmetrical
DC(a).
Asymmetrical
DC
consisting
of
two
WGs
with
different
widths.
Principle
TM0TMTE44w2w1
wgLc1
Lc2L0Lz1Lx1Lz2Lx2Daoxin
Dai,
Journal
of
Lightwave
Technology,
30(20):
3281‐3287
(2012).
PBS
based
on
a
three‐waveguides
coupling
system
StructureTM/TETETMTransmission
(dBm)Power
(dBm)1.53μm1.58μmTransmission
(dBm)Power
(dBm)0
1.45Wavelength
(nm)-25-10-15-20
0-51.65Thru
port(a)
Input:
TM0
1.5
1.55
Wavelength
(μm)‐35‐45‐15
‐25Thru
TM
input
(a)Results15101590
45
1530
1550
1570
Wavelength
(nm)
1590Thru
Cross
‐55‐15
1510
1530
1550
1570
TE
input
‐25‐35‐45‐55-30
-10
-20
-30
-40
-501.451.51.61.65
1.55Wavelength
(μm)
Cross
port
1.6Thru
portCross
port(b)
Input:
TE0SimulationMeasurement
CrossR2=20μm,R1=R2–0.7μmWG#22mismatchWG#1w1(b)TER2=20μm,R1=R2–0.7μmWG#2w2w1WG#1(a)TMOPLOPL46(b).
Asymmetrical
DC:
a
bending
coupler.
Due
to
the
birefringence,
the
phase‐matching
condition
is
satisfied
for
only
one
polarization
(e.g.,
TM)
in
this
structure.
Therefore,
TM
polarization
will
be
coupled
from
one
waveguide
R1R2w1wgw2
148
146
144
142
140
138
136
1340.440.460.580.60.48
0.5
0.52
0.54
0.56
Waveguide
width
(μm)0.440.460.580.60.48
0.5
0.52
0.54
0.56
Waveguide
width
(μm)
to
the
other
one
while
TE
polarization
won’t.
Then
these
two
polarizations
are
separated.
Because
the
TM
polarization
has
very
strong
coupling,
an
ultra‐compact
PBS
is
expected.
The
phase
matching
condition:
OPL≡β2R2θ=
β1R1θ.
208
204
200
196
192
188
184
18047Phase‐matching
conditionw1opt=0.55um;
w1
wg
w2R2=20um,
R1=R2-0.7um,
w2=0.46umR1R248TMTESiO2TE/TMw1hcowgw2SiSiTMTETE/TMw1w2wgapR3LxLzR=20μmS-bendL<10umTMTESiO2
~0.983~0.97~0.02<0.001The
PBS
design
SiPower
(dB)Power
(dB)Extinction
ratio
(dB)495020151025145016501500
1550
1600
Wavelength
(nm)
TE
TM(c)
Calculated
‐20‐25
‐5‐10/p>
1550
1600
Wavelength
(nm)CrossThru(b)
TM
inputCalculated
The
fabricated
PBS
and
the
characterization
TE
TMTM
TE‐20‐25
‐5‐10/p>
14501500
1550
1600
Wavelength
(nm)ThruCrossCalculated(a)
TE
inputneff50(c)
Asymmetrical
DC
with
two
different
types
of
WGsTETMSiO2SiTE/TMwcohcwg
wS
wslotSiO2SiSiSiAirUse
the
coupling
betweenSOI
nanowire
and
nano-slot
waveguide.Daoxin
Dai,
Zhi
Wang,
and
John
E
Bowers,
Optics
Letters,
36(13),
2590-2592
(2011).
Lcupl=1*Lπ_TM
=0*Lπ_TE!Phase-matching
for
TM
only.1.61.52.12.01.91.81.72.32.22.52.40.10.150.20.40.450.50.25
0.3
0.35
wSi,
wco
(μm)TEwcoTETMNano-slot
WG
wSi
wslot
Airhco
Si
SiO2
Nanowire
TM
Si
Air
Si
SiO2wslot=60nmwslot=80nmwslot=100nmhco=250nmTE
(Ex)
TE
(Ex)TM
(Ey)TM
(Ey)nano-slotwaveguideSOI
nanowire
(b)51Light
propagation
Length
<9
μ
m,
and
simple
structure;Daoxin
Dai,
Zhi
Wang,
and
John
E
Bowers,
Optics
Letters,
36(13),
2590-2592
(2011).Lc(a)
TE(b)
TM0.4μm0.4μm52Experimental
demonstrationShiyun
Lin,
et
al.
Appl.
Phys.
Lett.
98,
151101
2011Normalized
Power
(dB)P
(h
)P
(h
)1.451.5TE
Input1.65F.
Lou,
D.
Dai,
and
L.
Wosinski,
Opt.
Lett.
37,
3372
(2012)
531.551.6-15-20
-5-1001.551.61.65
-15
-20
1.45
1.5Wavelength
(μm)
-5-1002
d3
dTM
Input
Au
SiO2
SiSiO2w
=100nm
AgAir
SiSiO201.32×109D.
Dai,
et
al.
Opt.
Express,
17:
16646,
2009
(d)
Asymmetrical
DC
with
two
different
types
of
WGsUsing
the
coupling
between
an
SOI
nanowire
and
a
hybrid
plasmonics
waveguideneffTransmission
(dB)Transmission
(dB)LC
=
2.2
μm
1.3μmC54w2w1mismatchingEx(TE0@HPW)Ey(TM0@HPW)Ex(TE0@NW)Ey
(TM0@NW)TM0@HPWTE0@HPWTM0@NWTE0@NWBLcTE/TMRTMTE
BOXSi
substrateThruCrosshmhSiO2w1
wgap
w2hSiBOXThruCross1
0-1
width
(nm)Cross
Thru
TE
TMInput
Input
Length~3.7
μm
Total
Total
Cross
Cross
Thru
Thru
(a)
TE
(b)
TM
wavelength
(μm)
wavelength
(μm)X.
Guan,
et
al.
Opt.
Lett.
(to
be
published)(e)
Asymmetrical
DC
with
two
different
types
of
WGs
Using
the
coupling
between
an
SOI
nanowireand
a
hybrid
plasmonics
waveguide55Advanced
multiplexing
plays
an
important
role.Application
of
asymmetrical
couplers
II
to
realize
the
multi‐channel
mode
multiplexing
technology.
Any
multiplexing?56Space‐division‐multiplexing
(SDM)
Space‐division‐multiplexing:
Multiple
fibers
/
Multi‐core
fiber;Multimode/polarization
mode
multiplexing:
Mode
handling
(conversion
&
coupling)
is
difficult
to
control
for
optical
fibers,
It
is
convenient
for
planar
optical
circuits
(which
will
be
shown
below);
Photonic
network‐on‐chip
with
the
mode‐multiplexing
technology.
Active:
Laser
diode;
Optical
modulators;
Photodetectors;Passive:
Power
splitter;
Polarization
handling
devices;
Mode
(de)multiplexer.57
Optical
modulator
array
for
TE
LD1×2
Powersplitter
1×N
Powersplitter
1×NPowersplitter
Polarization
rotatorAdvantages:
Only
one
laser
source
is
needed
(convenient
to
use
an
off‐chip
laser);
All
the
optical
modulators
are
identical
(easy
chip
design).
Easy
management;
Low
cost;
Monolithical
integration
is
possible
with
the
Ge‐on‐Si
platform.
Mode
MUXer
ModeMUXer
ModedeMUXer
Mode
deMUXerPhotodetector
array
Multimode
waveguide
PolarizationPolarization
°°°°
Splitter
combiner
Multimode
waveguide58Mode
(de)multiplexer:
structure
and
designDesign
the
widths
(w1,
w2,
…
)
and
lengths
(Lc1,
Lc2,
…
)
for
the
coupling
region.°°°°
Mode
demultiplexer
Multiode
waveguide(a)
w1w2
w3Lc1
Lc2
Mode
multiplexerLc34‐channel10z
(μm)00010−10−10−1059−2−112
0x
(μm)−3
−2
−112
0x
(μm)1
23−3
−2
−1
0
x
(μm)01w3=2.35μm
Cw2=1.68μm
Bw1=1.02μm
A
Accesswaveguide
Accesswaveguide
AccesswaveguideI4
Configuration
of
the
proposed
mode
MUXersLc3I2
and
deMUXersawith
4
channels
60°°°Mode
deMUXer
Multiode
waveguide
w2w3The
designed
and
fabricated
MUXer/deMUXer
with
four
channels.
c1
Lc2Mode
MUXer
I1
I3
O1
O3
O4
O2
w1
wg
°°°MUXerdeMUXerI4
I2
I1
I3
O4
O2
O1
O3
Power
(dBm)Power
(dBm)Power
(dBm)Power
(dBm)61°°°I4
I2
I1
I3
O4
O2
O1
O3
O125dBO224dB
Wavelength
(nm)MUXer
O4
O2
O3
From
I1Wavelength
(nm)
O3
28.3dB
O2
O4
O1
From
I3Wavelength
(nm)
deMUXer
O3
O4
O1
From
I2Wavelength
(nm)
O4
23dB
O1
O3
O2
From
I4
AC
BDWDMPDMMultimode
SDMMulti‐core
SMDNch4~10022~81~10MUXerHybrid
multiplexing
technologyLDOptical
modulator
array1×2N
PSPR°°°°Mode
MUXerPhotodetector
ArrayPR
ModedeMUXerPS:
Power
SplitterPR:
Polarization
Rotator~1Terabit/s
using
a
single‐wavelength
carrier
(with
PDM
+
multimode
SDM);
~
100
Terabit/s
using
many
wavelengths
(with
WDM);
~
1Petabit/s
using
multiple
cores
(with
multi‐core
SDM);
Need
novel
PICs!
6263Devices
for
hybrid
multiplexing:
polarization
+
mode
MUXersTE
(4‐channels)
+
TM
(4‐channels)A
PBS
for
TE0
&
TM064Possibility
of
Tera‐bit/s
with
only
a
single
wavelength
carrier
[
8
ch
(TE)
+
8
ch
(TM)
]
*
70Gbps
>
1Tbps.
Y.
Tang,
J.
D.
Peters,
and
J.
E.
Bowers.
Optics
Express,20:11529
(2012)
65Nature
Photonics
1,
52
(2007)Opt.
Express
16,
4872‐4880
(2008)
4
Polarization
mode
conversion/rotationMotivation:
to
realize
the
polarization
diversity,
which
is
a
general
solution
for
polarization‐dependence
issue
Polarization
transparent
PICs.
Key
devices:
PS,
PR.
66An
approach
for
realizing
polarization
rotatorsExEySiTM(a)TEHSiO2:
n1=1.445
W
He
WeSi:
n2=3.48x
y
(b)Mode
hybridizationMode
#2:
neff=2.7086
ExEyMode
#1:
neff=2.6016
ExEy
(c)
Length
~8μm;
Simple
structure;
Easy
design
and
fabrication;Z.
Wang,
and
D.
Dai.
JOSA
B.
25(5):
747‐753,
2008
8μm67Experimental
demonstrationVermeulen,
et
al.
PTL,
2011.68Daoxin
Dai,
and
John
E.
Bowers,
Opt.Express,
19(11):
10940-10949
(2011).SiO2TM
SiTEPolarization
splitter
rotator
(PSR)
Structure
and
principle
TE
TETE0TE1TM0TM0TE2w=0.TE176μmSiNSiSiO2TE0TE1TE2TM0TM1SiO2SiSiO2TE0TE2TE1w0TM0AirTM0TE1SiSiO2The
effective
index
neffThe
effective
index
neffThe
effective
index
neffy
(μm)69Daoxin
Dai,
Yongbo
Tang,
and
John
E
Bowers,
Opt.
Express
20(12):
13425‐13439
(2012).
1.452.702.452.201.951.700.31.5
0.6
0.9
1.2The
waveguide
width
wco
(μm)1.45Principle:
Mode
conversion
(TM0
2.95
2.70
2.45
2.20
1.95
1.700.31.5
0.6
0.9
1.2The
waveguide
width
wco
(μm)2.12.0TE1)
in
a
taper
structure
2.9
2.8
2.7
2.6
2.5
2.4
2.3
2.20.31.5
0.5
0.7
0.9
1.1
1.3The
waveguide
width
wco
(μm)x
(μm)x
(μm)(a)
neff=2.25295(b)
neff=2.19855ExEyExEyMode
hybridizationLtp1=15,10,5,4,3,2,1μmTM0TE1TM0TM0Ltp1=15,10,5,4,3,2,1μmTE0TE1TM0TM0TE2w=0.76μmSSiiNTE1SiO2The
mode
conversion
efficiency
ηThe
effective
index
neff-1.5-1.5-1.0-0.50.00.50.50.0-0.5-1.0x/umx/um1.01.07005101520253035404550556065
z/um05101520253035404550556065
z/umDaoxin
Dai,
Yongbo
Tang,
and
John
E
Bowers,
Opt.
Express
20(12):
13425‐13439
(2012).
Principle:
Mode
conversion
(TM0
2.9
2.8
2.7
2.6
2.5
2.4
2.3
2.2
2.1
2.00.31.5
0.5
0.7
0.9
1.1
1.3The
waveguide
width
wco
(μm)TM0TE1
(~100%)TE0TE00%
TE1)
in
a
taper
structure100%
90%
80%
70%
60%
50%
40%
30%
20%
10%0204060100120140160
80Ltp2
(μm)71TE0(a)
TE
inputTE0TE0(b)TaperCoupling(b)
TM
inputTM0TE1TE0Ltot=71μmLtp1Ltp2Ltp3LdcLtpoutw3w0w4woutwoutw2Daoxin
Dai,
and
John
E.
Bowers,
Opt.Express,
19(11):
10940-10949
(2011).
Adiabatic
taper•
Easy
to
fabricate.
No
additional
steps
needed.•
Standard
waveguide
geometry.
SOI
with
any
top
silicon
thickness.TMSiO2SiTEWith
the
help
of
an
asymmetrical
coupler:
TE1
TE
TEw1Polarization
splitter‐rotator
(PSR)
Ltot=71μm50μm72Shorter
taper
section
shorter
PSR17μmLtp1Ltp3LdcLtpoutw3w0w4woutwoutw1w2
Ltp2Adiabatic
taper73For
SOI
strip
waveguides,
one
can
introduce
a
SiO2
upper‐cladding
make
the
waveguide
symmetrical
in
the
vertical
direction
so
that
the
mode
conversion
can
be
depressed
when
needed.
However,
for
SOI
ridge
waveguides,
which
is
often
used,
what
happens?het
HCladding
wco
Core
Buffernclnco
nbf(b)It
is
still
asymmetrical
in
the
vertical
direction
even
with
the
same
material
for
the
upper‐
and
under‐cladding.74Mode
conversion
in
a
sub‐micron
SOI
ridge
waveguide
tapers
w2Regular
taper
Ltp
w1(a)Bufferhet
HCladding
wco
Corenclnconbf(b)het
HCladding
wco
Core
Buffer
wsidenconclnbf(b)Bi‐level
taper
(a)Daoxin
Dai,
Y.
Tang,
and
J.
E
Bowers,
Opt.
Express
20(12):
13425‐13439
(2012).
(a)het=0.4HTE0TE2TE1TE3TM0TM0CladdingwcoTE1nclhHetncoCoreTM0nbfBuffer(b)het=0.5HTE0TE1TE2TE3TM0TM0CladdingwconclhHetncoCoreTM0nbfBufferTE1(c)het=0.6HTE0TE1TE2TM0TM0TE3wcoTM0nclncoCoreCladdinghetHTE1nbfBufferThe
effective
index
neffThe
effective
index
neffThe
effective
index
neffy(μm)y(μm)y(μm)y(μm)752.83.02.93.23.10.531
1.5
2
2.5
The
waveguide
width
wco
(μm)2.83.02.90.531
1.5
2
2.5
The
waveguide
width
wco
(μm)2.72.83.02.93.23.10.531
1.5
2
2.5The
waveguide
width
wco
(μm)Mode
hybridization
in
SOI
ridge
waveguides
3.2
3.1
CoreBufferhet
HCladding
wconclnconbf(b)x
(μm)(a)
mode
#1:
neff=2.908029wco=1.0μmExEyx
(μm)(b)
mode
#2:
neff=2.877179wco=1.0μmExEyx
(μm)(a)
mode
#1:
neff=2.942011wco=2.45μmExEyx
(μm)(b)
mode
#2:
neff=2.947892wco=2.45μmExEyDaoxin
Dai,
Y.
Tang,
and
J.
E
Bowers,
Opt.
Expres
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 分包工程安全协议完整版
- 维修合同的标的和标的物
- 影视剧制片人聘用合同协议书范本签约版5
- 铝锭生产线建设合同(2024版):生产线建设协议
- 二零二四年度高校毕业设计指导服务协议3篇
- 房屋托管出租的合同范本
- 公路排水沟施工合同范本
- 2024年度仪器设备采购与安装合同
- 《产后出血的处理》课件
- 2024版高层住宅工程防火设施合同
- 网络与信息安全管理员-互联网信息审核员理论考试题库(新版)
- 个体诊所备案信息表
- 看韩剧学韩语智慧树知到期末考试答案2024年
- 移动政企解决方案经理竞聘
- 个人极端应急处突课件
- 《网上支付与安全》课件
- 温州家乡的英语介绍
- 《阿迪达斯品牌介绍》课件
- 年度乡镇人大工作总结
- 股份有限公司深入推进2023-2025年全面合规风险防控管理体系建设的实施意见
- 肺癌射频消融术护理课件
评论
0/150
提交评论