版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京市西城区北京师大附属实验中学2025届高二上数学期末调研试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数y=x3+x2-x+1在区间[-2,1]上的最小值为()A. B.2C.-1 D.-42.执行如图所示的程序框图,若输出的,则输入的可能为()A.9 B.5C.4 D.33.直线在y轴上的截距为()A.-1 B.1C. D.4.圆:与圆:的位置关系是()A.内切 B.外切C.相交 D.相离5.已知抛物线x2=4y上有一条长为6的动弦AB,则AB的中点到x轴的最短距离为()A. B.C.1 D.26.函数f(x)=xex的单调增区间为()A.(-∞,-1) B.(-∞,e)C.(e,+∞) D.(-1,+∞)7.若两个不同平面,的法向量分别为,,则()A.,相交但不垂直 B.C. D.以上均不正确8.不等式的解集为()A. B.C. D.9.如图是抛物线拱形桥,当水面在时,拱顶离水面,水面宽,若水面上升,则水面宽是()(结果精确到)(参考数值:)A B.C. D.10.数列满足,,,则数列的前10项和为()A.60 B.61C.62 D.6311.下列推理中属于归纳推理且结论正确的是()A.由,求出,,,…,推断:数列的前项和B.由满足对都成立,推断:为奇函数C.由半径为的圆的面积,推断单位圆的面积D.由,,,…,推断:对一切,12.直线被圆所截得的弦长为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.随机投掷一枚均匀的硬币两次,则两次都正面朝上的概率为______14.给出下列命题:①若两条不同的直线同时垂直于第三条直线,则这两条直线互相平行;②若两个不同的平面同时垂直于同一条直线,则这两个平面互相平行;③若两条不同的直线同时垂直于同一个平面,则这两条直线互相平行;④若两个不同的平面同时垂直于第三个平面,则这两个平面互相垂直.其中所有正确命题的序号为________.15.如图,棱长为1的正方体,点沿正方形按的方向作匀速运动,点沿正方形按的方向以同样的速度作匀速运动,且点分别从点A与点同时出发,则的中点的轨迹所围成图形的面积大小是________.16.如图,四边形为直角梯形,且,为正方形,且平面平面,,,,则______,直线与平面所成角的正弦值为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列中,,.(1)求证:数列是等差数列,并求数列的通项公式;(2)求数列的前项和.18.(12分)如图,在四棱柱中,平面,底面ABCD满足∥BC,且(Ⅰ)求证:平面;(Ⅱ)求直线与平面所成角的正弦值.19.(12分)如图,在平面直角标系中,已知n个圆与x轴和线均相切,且任意相邻的两个圆外切,其中圆.(1)求数列通项公式;(2)记n个圆的面积之和为S,求证:.20.(12分)某车间打算购买2台设备,该设备有一个易损零件,在购买设备时可以额外购买这种易损零件作为备件,价格为每个100元.在设备使用期间,零件损坏,备件不足再临时购买该零件,价格为每个300元.在使用期间,每台设备需要更换的零件个数的分布列为567.表示2台设备使用期间需更换的零件数,代表购买2台设备的同时购买易损零件的个数.(1)求的分布列;(2)以购买易损零件所需费用的期望为决策依据,试问在和中,应选哪一个?21.(12分)在锐角中,角的对边分别为,满足.(1)求;(2)若的面积为,求的值.22.(10分)已知椭圆的一个顶点为,离心率为(1)求椭圆C的方程;(2)若直线l与椭圆C交于M、N两点,直线BM与直线BN的斜率之积为,证明直线l过定点并求出该定点坐标
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】详解】,令,解得或;令,解得函数在上递增,在递减,在递增,时,取极大值,极大值是时,函数取极小值,极小值是,而时,时,,故函数的最小值为,故选C.2、D【解析】根据输出结果可得输出时,结合执行逻辑确定输入k的可能值,即可知答案.【详解】由,得,则输人的可能为.∴结合选项知:D符合要求.故选:D.3、A【解析】把直线方程由一般式化成斜截式,即可得到直线在轴上的截距.【详解】由,可得,则直线在轴上的截距为.故选:A4、A【解析】先计算两圆心之间的距离,判断距离和半径和、半径差之间的关系即可.【详解】圆圆心,半径,圆圆心,半径,两圆心之间的距离,故两圆内切.故选:A.5、D【解析】由题意知,抛物线的准线l:y=-1,过A作AA1⊥l于A1,过B作BB1⊥l于B1,设弦AB的中点为M,过M作MM1⊥l于M1.则|MM1|=.|AB|≤|AF|+|BF|(F为抛物线的焦点),即|AF|+|BF|≥6,|AA1|+|BB1|≥6,2|MM1|≥6,|MM1|≥3,故M到x轴的距离d≥2.6、D【解析】求出,令可得答案.【详解】由已知得,令,得,故函数f(x)=xex的单调增区间为(-1,+∞).故选:D.7、B【解析】由向量数量积为0可求.【详解】∵,,∴,∴,∴,故选:B.8、A【解析】根据一元二次不等式的解法进行求解即可.【详解】,故选:A.9、C【解析】先建立直角坐标系,设抛物线方程为x2=my,将点坐标代入抛物线方程求出m,从而可得抛物线方程,再令y=代入抛物线方程求出x,即可得到答案【详解】解:如图建立直角坐标系,设抛物线方程为x2=my,由题意,将代入x2=my,得m=,所以抛物线的方程为x2=,令y=,解得,所以水面宽度为2.24×817.9m故选:C10、B【解析】讨论奇偶性,应用等差、等比前n项和公式对作分组求和即可.【详解】当且为奇数时,,则,当且为偶数时,,则,∴.故选:B.11、A【解析】根据归纳推理是由特殊到一般,推导结论可得结果.【详解】对于A,由,求出,,,…,推断:数列的前项和,是由特殊推导出一般性的结论,且,故A正确;B和C属于演绎推理,故不正确;对于D,属于归纳推理,但时,结论不正确,故D不正确.故选:A.12、A【解析】求得圆心坐标和半径,结合点到直线的距离公式和圆的弦长公式,即可求解.【详解】由圆的方程可知圆心为,半径为,圆心到直线的距离,所以弦长为.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、##【解析】列举出所有情况,利用古典概型的概率公式求解即可【详解】随机投掷一枚均匀的硬币两次,共有:正正,正反,反正,反反共4种情况,两次都是正面朝上的有:正正1种情况,所以两次都正面朝上的概率为,故答案为:14、②③【解析】由垂直于同一直线的两直线的位置关系判断①;由直线与平面垂直的性质判断②③;由空间中平面与平面的位置关系判断④【详解】①若两条不同的直线垂直于第三条直线,则这两条直线有三种位置关系:平行、相交或异面,故错误;②根据线面垂直的性质知,若两个不同的平面垂直于一条直线,则这两个平面互相平行,故正确;③由线面垂直的性质知:若两条不同的直线同时垂直于同一个平面,则这两条直线互相平行,故正确④若两个不同的平面同时垂直于第三个平面,这两个平面相交或平行,故错误.其中所有正确命题的序号为②③故答案为:②③15、##【解析】画出符合要求的图形,观察得到轨迹是菱形,并进行充分性和必要性两方面的证明,并求解出轨迹图形的面积.【详解】如图,分别是正方形ABCD,,的中心,下面进行证明:菱形EFGC的周界即为动线段PQ的中点H的轨迹,首先证明:如果点H是动线段PQ的中点,那么点H必在菱形EFGC的周界上,分两种情况证明:(1)P,Q分别在某一个定角的两边上,不失一般性,设P从B到C,而Q同时从到C,由于速度相同,所以PQ必平行于,故PQ的中点H必在上;(2)P,Q分别在两条异面直线上,不失一般性,设P从A到B,同时Q从到,由于速度相同,则,由于H为PQ的中点,连接并延长,交底面ABCD于点T,连接PT,则平面与平面交线是PT,∵∥平面,∴∥PT,∴,而,∥BC,∴是等腰直角三角形,,从而T在AC上,可以证明FH∥AC,GH∥AC,DG∥AC,基于平行线的唯一性,显然H在DG上,综合(1)(2)可证明,线段PQ的中点一定在菱形EFGC的周界上;下面证明:如果点H在菱形EFGC的周界上,则点H必定是符合条件的线段的中点.也分两种情况进行证明:(1)H在CG或CE上,过点H作PQ∥(或BD),而与BC及(或CD及BC)分别相交于P和Q,由相似的性质可得:PH=QH,即H是PQ的中点,同时可证:BP=(或BQ=DP),因此P、Q符合题设条件(2)H在EF或FG上,不失一般性,设H在FG上,连接并延长,交平面AC于点T,显然T在AC上,过T作TP∥CB于点P,则TP∥,在平面上,连接PH并延长,交于点Q,在三角形中,G是的中点,∥AC,则H是的中点,于是,从而有,又因为TP∥CB,,所以,从而,因此P,Q符合题设条件.由(1)(2),如果H是菱形EFGC周界上的任一点,则H必是符合题设条件的动线段PQ的中点,证毕.因为四边形为菱形,其中,所以边长为且,为等边三角形,,所以面积.故答案为:【点睛】对于立体几何轨迹问题,要画出图形,并要善于观察,利用所学的立体几何方面的知识,大胆猜测,小心验证,对于多种情况的,要画出相应的图形,注意分类讨论.16、①..②..【解析】以点为坐标原点,,,所在直线分别为轴,轴,轴建立空间直角坐标系,根据空间向量的线性运算求得向量的坐标,由此求得,由线面角的空间向量求解方法求得答案.【详解】解:以点为坐标原点,,,所在直线分别为轴,轴,轴建立空间直角坐标系(如下图所示)由题意可知,,,因为,,所以,故设平面的法向量为,则,令,得因为,所以直线与平面所成角的正弦值为故答案为:;.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析,(2)【解析】(1)由,取倒数得到,再利用等差数列的定义求解;(2)由(1)得到,利用错位相减法求解.【小问1详解】证明:由,以及,显然,所以,即,所以数列是首项为,公差为的等差数列,所以,所以;【小问2详解】由(1)可得,,所以数列的前项和①所以②则由②-①可得:,所以数列的前项和.18、(Ⅰ)证明见解析;(Ⅱ)【解析】(Ⅰ)证明,根据得到,得到证明.(Ⅱ)如图所示,分别以为轴建立空间直角坐标系,平面的法向量,,计算向量夹角得到答案.【详解】(Ⅰ)平面,平面,故.,,故,故.,故平面.(Ⅱ)如图所示:分别以为轴建立空间直角坐标系,则,,,,.设平面的法向量,则,即,取得到,,设直线与平面所成角为故.【点睛】本题考查了线面垂直,线面夹角,意在考查学生的空间想象能力和计算能力.19、(1).(2)证明见解析.【解析】(1)由已知得,设圆分别切轴于点,过点作,垂足为.在从而有得,由等比数列的定义得数列是以为首项,为公比的等比数列.由此求得答案;(2)由(1)得再由圆的面积公式和等比数列求和公式计算可得证.【小问1详解】解:直线的倾斜角为则圆心在直线上,,设圆分别切轴于点,过点作,垂足为.在中,所以即化简得,变形得,所以是以为首项,为公比的等比数列.,.【小问2详解】解:由(1)得所以,所以.20、(1)答案见解析;(2)应选择.【解析】(1)由每台设备需更换零件个数的分布列求出的所有可能值,并求出对应的概率即可得解.(2)分别求出和时购买零件所需费用的期望,比较大小即可作答.【小问1详解】的可能取值为10,11,12,13,14,,,,,,则的分布列为:10111213140.090.30.370.20.04【小问2详解】记为当时购买零件所需费用,,,,,元,记为当时购买零件所需费用,,,,元,显然,所以应选择.21、(1);(2).【解析】(1)由条件可得,即,从而可得答案.(2)由条件结合三角形的面积公式可得,再由余弦定理得,配方可得答案.【详解】(1)因为,所以,所以所以,因为所以,因为,所以(2)由面积公式得,于是,由余弦定理得,即,整理得,故.22、(1);(2)答案见解析,直线过定点.【解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医疗行业采购供应链管理
- 教育行业美工互动教学设计体会
- 健康行业保健师培训心得
- 钢结构工程师的工作总结
- 营销策略实操总结
- 风险管理策略实施计划
- 学校财务年度工作总结怎么写2000字
- 智慧城市工程师工作总结
- 班会活动的多样化设计计划
- 幼儿园工作总结勇敢探索未来
- 大学美育-美育赏湖南智慧树知到期末考试答案章节答案2024年湖南高速铁路职业技术学院
- 中国脑卒中防治指导规范(2021 年版)
- 电感耦合等离子体发射光谱仪的维护和保养
- 2024-2030年中国新鲜果蔬行业市场发展分析及竞争策略与投资前景研究报告
- 在线网课《马克思主义新闻思想(河北)》单元测试考核答案
- DZ/T 0430-2023 固体矿产资源储量核实报告编写规范(正式版)
- 土地生态学智慧树知到期末考试答案章节答案2024年东北农业大学
- 突发性聋护理
- 水利工程管理房施工方案
- 南财公共英语3级第三套试卷
- 2024年舟山继续教育公需课考试题库
评论
0/150
提交评论