广西壮族自治区南宁市兴宁区第三中学2025届高一上数学期末质量检测试题含解析_第1页
广西壮族自治区南宁市兴宁区第三中学2025届高一上数学期末质量检测试题含解析_第2页
广西壮族自治区南宁市兴宁区第三中学2025届高一上数学期末质量检测试题含解析_第3页
广西壮族自治区南宁市兴宁区第三中学2025届高一上数学期末质量检测试题含解析_第4页
广西壮族自治区南宁市兴宁区第三中学2025届高一上数学期末质量检测试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广西壮族自治区南宁市兴宁区第三中学2025届高一上数学期末质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.“角为第二象限角”是“”的()A.充要条件 B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件2.锐角三角形的内角、满足:,则有()A. B.C. D.3.已知函数则的值为()A. B.C.0 D.14.若角满足条件,且,则在A.第一象限 B.第二象限C.第三象限 D.第四象限5.已知命题,则p的否定为()A. B.C. D.6.“”是“为锐角”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既非充分又非必要条件7.的分数指数幂表示为()A. B.C. D.都不对8.已知,则a,b,c的大小关系为()A.a<b<c B.c<a<bC.a<c<b D.c<b<a9.下列函数中为奇函数的是()A. B.C. D.10.已知a>0,则当取得最小值时,a值为()A. B.C. D.3二、填空题:本大题共6小题,每小题5分,共30分。11.若函数满足以下三个条件:①定义域为R且函数图象连续不断;②是偶函数;③恰有3个零点.请写出一个符合要求的函数___________.12.已知,则的最大值为_______13.已知函数f(x)=(5-a)x-a+1,x<1ax,x≥1,满足对任意都有成立,那么实数14.直线与平行,则的值为_________.15.设函数则的值为________16.若幂函数的图象经过点,则的值等于_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.有三个条件:①;②且;③最小值为2且.从这三个条件中任选一个,补充在下面的问题中,并作答.问题:已知二次函数满足_________,.(1)求的解析式;(2)设函数,求的值域.注:如果选择多个条件分别解答,按第一个解答计分.18.如图,是正方形,直线底面,,是的中点.(1)证明:直线平面;(2)求直线与平面所成角的正切值.19.已知函数.(1)若,求的解集;(2)若为锐角,且,求的值.20.已知全集为实数集,集合,.(1)求及;(2)设集合,若,求实数的取值范围.21.已知数列的前n项和为(1)求;(2)若,求数列的前项的和

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】利用充分条件和必要条件的定义判断.【详解】当角为第二象限角时,,所以,故充分;当时,或,所以在第二象限或在第三象限,故不必要;故选:B2、C【解析】根据三角恒等变换及诱导公式化简变形即可.【详解】将,变形为则,又,故,即,,因为内角、都为锐角,则,故,即,,所以.故选:C.3、D【解析】根据分段函数解析式及指数对数的运算法则计算可得;【详解】解:因为,所以,所以,故选:D4、B【解析】因为,所以在第二或第四象限,且,所以在第二象限考点:三角函数的符号5、D【解析】全称命题的否定为存在命题,利用相关定义进行判断即可【详解】全称命题的否定为存在命题,命题,则为.故选:D6、B【解析】根据充分条件与必要条件的定义判断即可.【详解】解:因为为锐角,所以,所以,所以“”是“为锐角”的必要条件;反之,当时,,但是不是锐角,所以“”是“为锐角”的非充分条件.故“”是“为锐角”必要不充分条件.故选:B.【点睛】本题主要考查充分条件与必要条件,与角的余弦在各象限的正负,属于基础题.7、B【解析】直接由根式化为分数指数幂即可【详解】解:故选:B【点睛】本题考查了根式与分数指数幂的互化,属基础题.8、B【解析】结合指数函数、幂函数的单调性确定正确选项.【详解】在上递增,在上递增..故选:B9、D【解析】利用奇函数的定义逐个分析判断【详解】对于A,定义域为,因为,所以是偶函数,所以A错误,对于B,定义域为,因为,且,所以是非奇非偶函数,所以B错误,对于C,定义域为,因为定义域不关于原点对称,所以是非奇非偶函数,所以C错误,对于D,定义域为,因为,所以是奇函数,所以D正确,故选:D10、C【解析】利用基本不等式求最值即可.【详解】∵a>0,∴,当且仅当,即时,等号成立,故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、(答案不止一个)【解析】根据偶函数和零点的定义进行求解即可.详解】函数符合题目要求,理由如下:该函数显然满足①;当时,,所以有,当时,,所以有,因此该函数是偶函数,所以满足②当时,,或,当时,,或舍去,所以该函数有3个零点,满足③,故答案为:12、【解析】消元,转化为求二次函数在闭区间上的最值【详解】,,时,取到最大值,故答案为:13、【解析】利用求解分段函数单调性的方法列出不等式关系,由此即可求解【详解】由已知可得函数在R上为单调递增函数,则需满足,解得,所以实数a的取值范围为,故答案为:14、【解析】根据两直线平行得出实数满足的等式与不等式,解出即可.【详解】由于直线与平行,则,解得.故答案为:.【点睛】本题考查利用两直线平行求参数,考查运算求解能力,属于基础题.15、【解析】直接利用分段函数解析式,先求出的值,从而可得的值.【详解】因为函数,所以,则,故答案为.【点睛】本题主要考查分段函数的解析式、分段函数解不等式,属于中档题.对于分段函数解析式的考查是命题的动向之一,这类问题的特点是综合性强,对抽象思维能力要求高,因此解决这类题一定要层次清楚,思路清晰.16、【解析】设出幂函数,将点代入解析式,求出解析式即可求解.【详解】设,函数图像经过,可得,解得,所以,所以.故答案为:【点睛】本题考查了幂函数的定义,考查了基本运算求解能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)若选择①,设代入,根据恒等式的思想可求得,得到的解析式;若选择②,设由,得,由,得出二次函数的对称轴即,再代入,解之可得的解析式;若选择③,设由,得,又恒成立,又,得出二次函数的对称轴解之即可;(2)由(1)知,根据二次函数的对称轴分析出上的单调性,可求得的值域.【详解】解:(1)若选择①,设则又因为即解得,又,所以解得,所以的解析式为;若选择②,设由,得,又,所以二次函数的对称轴即,又,所以解得所以的解析式为;若选择③,设由,得,又恒成立,又,所以二次函数的对称轴即,且解得所以的解析式为;(2)由(1)知,所以,因为对称轴所以在上单调递减,在上单调递增,故在上的值域为.【点睛】方法点睛:求函数解析式的方法:一.换元法:已知复合函数的解析式,求原函数的解析式,把看成一个整体t,进行换元,从而求出的方法,注意所换元的定义域的变化.二.配凑法:使用配凑法时,一定要注意函数的定义域的变化,否则容易出错.三.待定系数法:己知函数解析式的类型,可设其解析式的形式,根据己知条件建立关于待定系数的方程,从而求出函数解析式的方法.四.消去法(方程组法):方程组法求解析式的关键是根据己知方程中式子的特点,构造另一个方程.五.特殊值法:根据抽象函数的解析式的特征,进行对变量赋特殊值.18、(1)证明见解析;(2);【解析】(1)连接,由三角形中位线可证得,根据线面平行判定定理可证得结论;(2)根据线面角定义可知所求角为,且,由长度关系可求得结果.【详解】(1)连接,交于,连接四边形为正方形为中点,又为中点平面,平面平面(2)平面直线与平面所成角即为设,则【点睛】本题考查立体几何中线面平行关系的证明、直线与平面所成角的求解;证明线面平行关系常采用两种方法:(1)在平面中找到所证直线的平行线;(2)利用面面平行的性质证得线面平行.19、(1)(2)【解析】(1)利用三角恒等变换,将函数转化为,由求解;(2)由得到,再由,利用二倍角公式求解.【小问1详解】解:,,,由,得,即,又,故的解集为.【小问2详解】由,得,因为为锐角,所以,则,故,,.20、(1),(2)【解析】(1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论