版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省江门市2025届数学高三上期末检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.斜率为1的直线l与椭圆相交于A、B两点,则的最大值为A.2 B. C. D.2.已知抛物线的焦点为,过焦点的直线与抛物线分别交于、两点,与轴的正半轴交于点,与准线交于点,且,则()A. B.2 C. D.33.已知函数,存在实数,使得,则的最大值为()A. B. C. D.4.设函数若关于的方程有四个实数解,其中,则的取值范围是()A. B. C. D.5.已知,则的取值范围是()A.[0,1] B. C.[1,2] D.[0,2]6.在中,,分别为,的中点,为上的任一点,实数,满足,设、、、的面积分别为、、、,记(),则取到最大值时,的值为()A.-1 B.1 C. D.7.函数f(x)=的图象大致为()A. B.C. D.8.己知全集为实数集R,集合A={x|x2+2x-8>0},B={x|log2x<1},则等于()A.[4,2] B.[4,2) C.(4,2) D.(0,2)9.根据散点图,对两个具有非线性关系的相关变量x,y进行回归分析,设u=lny,v=(x-4)2,利用最小二乘法,得到线性回归方程为=0.5v+2,则变量y的最大值的估计值是()A.e B.e2 C.ln2 D.2ln210.过抛物线C:y2=4x的焦点F,且斜率为的直线交C于点M(M在x轴的上方),l为C的准线,点N在l上且MN⊥l,则M到直线NF的距离为()A. B. C. D.11.已知集合,,则A. B.C. D.12.已知椭圆的短轴长为2,焦距为分别是椭圆的左、右焦点,若点为上的任意一点,则的取值范围为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若展开式的二项式系数之和为64,则展开式各项系数和为__________.14.在中,若,则的范围为________.15.已知双曲线的左右焦点分别关于两渐近线对称点重合,则双曲线的离心率为_____16.设的内角的对边分别为,,.若,,,则_____________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知等差数列{an}的各项均为正数,Sn为等差数列{an}的前n项和,.(1)求数列{an}的通项an;(2)设bn=an⋅3n,求数列{bn}的前n项和Tn.18.(12分)已知数列是各项均为正数的等比数列,,且,,成等差数列.(Ⅰ)求数列的通项公式;(Ⅱ)设,为数列的前项和,记,证明:.19.(12分)已知椭圆:的离心率为,直线:与以原点为圆心,以椭圆的短半轴长为半径的圆相切.为左顶点,过点的直线交椭圆于,两点,直线,分别交直线于,两点.(1)求椭圆的方程;(2)以线段为直径的圆是否过定点?若是,写出所有定点的坐标;若不是,请说明理由.20.(12分)设函数,其中是自然对数的底数.(Ⅰ)若在上存在两个极值点,求的取值范围;(Ⅱ)若,函数与函数的图象交于,且线段的中点为,证明:.21.(12分)如图,平面四边形为直角梯形,,,,将绕着翻折到.(1)为上一点,且,当平面时,求实数的值;(2)当平面与平面所成的锐二面角大小为时,求与平面所成角的正弦.22.(10分)已知在中,角,,的对边分别为,,,且.(1)求的值;(2)若,求面积的最大值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
设出直线的方程,代入椭圆方程中消去y,根据判别式大于0求得t的范围,进而利用弦长公式求得|AB|的表达式,利用t的范围求得|AB|的最大值.【详解】解:设直线l的方程为y=x+t,代入y2=1,消去y得x2+2tx+t2﹣1=0,由题意得△=(2t)2﹣1(t2﹣1)>0,即t2<1.弦长|AB|=4.故选:C.【点睛】本题主要考查了椭圆的应用,直线与椭圆的关系.常需要把直线与椭圆方程联立,利用韦达定理,判别式找到解决问题的突破口.2、B【解析】
过点作准线的垂线,垂足为,与轴交于点,由和抛物线的定义可求得,利用抛物线的性质可构造方程求得,进而求得结果.【详解】过点作准线的垂线,垂足为,与轴交于点,由抛物线解析式知:,准线方程为.,,,,由抛物线定义知:,,,.由抛物线性质得:,解得:,.故选:.【点睛】本题考查抛物线定义与几何性质的应用,关键是熟练掌握抛物线的定义和焦半径所满足的等式.3、A【解析】
画出分段函数图像,可得,由于,构造函数,利用导数研究单调性,分析最值,即得解.【详解】由于,,由于,令,,在↗,↘故.故选:A【点睛】本题考查了导数在函数性质探究中的应用,考查了学生数形结合,转化划归,综合分析,数学运算的能力,属于较难题.4、B【解析】
画出函数图像,根据图像知:,,,计算得到答案.【详解】,画出函数图像,如图所示:根据图像知:,,故,且.故.故选:.【点睛】本题考查了函数零点问题,意在考查学生的计算能力和应用能力,画出图像是解题的关键.5、D【解析】
设,可得,构造()22,结合,可得,根据向量减法的模长不等式可得解.【详解】设,则,,∴()2•2||22=4,所以可得:,配方可得,所以,又则[0,2].故选:D.【点睛】本题考查了向量的运算综合,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.6、D【解析】
根据三角形中位线的性质,可得到的距离等于△的边上高的一半,从而得到,由此结合基本不等式求最值,得到当取到最大值时,为的中点,再由平行四边形法则得出,根据平面向量基本定理可求得,从而可求得结果.【详解】如图所示:因为是△的中位线,所以到的距离等于△的边上高的一半,所以,由此可得,当且仅当时,即为的中点时,等号成立,所以,由平行四边形法则可得,,将以上两式相加可得,所以,又已知,根据平面向量基本定理可得,从而.故选:D【点睛】本题考查了向量加法的平行四边形法则,考查了平面向量基本定理的应用,考查了基本不等式求最值,属于中档题.7、D【解析】
根据函数为非偶函数可排除两个选项,再根据特殊值可区分剩余两个选项.【详解】因为f(-x)=≠f(x)知f(x)的图象不关于y轴对称,排除选项B,C.又f(2)==-<0.排除A,故选D.【点睛】本题主要考查了函数图象的对称性及特值法区分函数图象,属于中档题.8、D【解析】
求解一元二次不等式化简A,求解对数不等式化简B,然后利用补集与交集的运算得答案.【详解】解:由x2+2x-8>0,得x<-4或x>2,
∴A={x|x2+2x-8>0}={x|x<-4或x>2},
由log2x<1,x>0,得0<x<2,
∴B={x|log2x<1}={x|0<x<2},
则,
∴.
故选:D.【点睛】本题考查了交、并、补集的混合运算,考查了对数不等式,二次不等式的求法,是基础题.9、B【解析】
将u=lny,v=(x-4)2代入线性回归方程=-0.5v+2,利用指数函数和二次函数的性质可得最大估计值.【详解】解:将u=lny,v=(x4)2代入线性回归方程=0.5v+2得:,即,当时,取到最大值2,因为在上单调递增,则取到最大值.故选:B.【点睛】本题考查了非线性相关的二次拟合问题,考查复合型指数函数的最值,是基础题,.10、C【解析】
联立方程解得M(3,),根据MN⊥l得|MN|=|MF|=4,得到△MNF是边长为4的等边三角形,计算距离得到答案.【详解】依题意得F(1,0),则直线FM的方程是y=(x-1).由得x=或x=3.由M在x轴的上方得M(3,),由MN⊥l得|MN|=|MF|=3+1=4又∠NMF等于直线FM的倾斜角,即∠NMF=60°,因此△MNF是边长为4的等边三角形点M到直线NF的距离为故选:C.【点睛】本题考查了直线和抛物线的位置关系,意在考查学生的计算能力和转化能力.11、D【解析】
因为,,所以,,故选D.12、D【解析】
先求出椭圆方程,再利用椭圆的定义得到,利用二次函数的性质可求,从而可得的取值范围.【详解】由题设有,故,故椭圆,因为点为上的任意一点,故.又,因为,故,所以.故选:D.【点睛】本题考查椭圆的几何性质,一般地,如果椭圆的左、右焦点分别是,点为上的任意一点,则有,我们常用这个性质来考虑与焦点三角形有关的问题,本题属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】
由题意得展开式的二项式系数之和求出的值,然后再计算展开式各项系数的和.【详解】由题意展开式的二项式系数之和为,即,故,令,则展开式各项系数的和为.故答案为:【点睛】本题考查了二项展开式的二项式系数和项的系数和问题,需要运用定义加以区分,并能够运用公式和赋值法求解结果,需要掌握解题方法.14、【解析】
借助正切的和角公式可求得,即则通过降幂扩角公式和辅助角公式可化简,由,借助正弦型函数的图象和性质即可解得所求.【详解】,所以,.因为,所以,所以.故答案为:.【点睛】本题考查了三角函数的化简,重点考查学生的计算能力,难度一般.15、【解析】
双曲线的左右焦点分别关于两条渐近线的对称点重合,可得一条渐近线的斜率为1,即,即可求出双曲线的离心率.【详解】解:双曲线的左右焦点分别关于两条渐近线的对称点重合,一条渐近线的斜率为1,即,,,故答案为:.【点睛】本题考查双曲线的离心率,考查学生的计算能力,确定一条渐近线的斜率为1是关键,属于基础题.16、或【解析】试题分析:由,则可运用同角三角函数的平方关系:,已知两边及其对角,求角.用正弦定理;,则;可得.考点:运用正弦定理解三角形.(注意多解的情况判断)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1).(2)【解析】
(1)先设等差数列{an}的公差为d(d>0),然后根据等差数列的通项公式及已知条件可列出关于d的方程,解出d的值,即可得到数列{an}的通项an;(2)先根据第(1)题的结果计算出数列{bn}的通项公式,然后运用错位相减法计算前n项和Tn.【详解】(1)由题意,设等差数列{an}的公差为d(d>0),则a4a5=(1+3d)(1+4d)=11,整理,得12d2+7d﹣10=0,解得d(舍去),或d,∴an=1(n﹣1),n∈N*.(2)由(1)知,bn=an⋅3n•3n=(2n+1)•3n﹣1,∴Tn=b1+b2+b3+…+bn=3×1+5×31+7×32+…+(2n+1)•3n﹣1,∴3Tn=3×31+5×32+…+(2n﹣1)•3n﹣1+(2n+1)•3n,两式相减,可得:﹣2Tn=3×1+2×31+2×32+…+2•3n﹣1﹣(2n+1)•3n=3+2×(31+32+…+3n﹣1)﹣(2n+1)•3n=3+2(2n+1)•3n=﹣2n•3n,∴Tn=n•3n.【点睛】本题主要考查等差数列基本量的计算,以及运用错位相减法计算前n项和.考查了转化与化归思想,方程思想,错位相减法的运用,以及逻辑思维能力和数学运算能力.属于中档题.18、(Ⅰ),;(Ⅱ)见解析【解析】
(Ⅰ)由,且成等差数列,可求得q,从而可得本题答案;(Ⅱ)化简求得,然后求得,再用裂项相消法求,即可得到本题答案.【详解】(Ⅰ)因为数列是各项均为正数的等比数列,,可设公比为q,,又成等差数列,所以,即,解得或(舍去),则,;(Ⅱ)证明:,,,则,因为,所以即.【点睛】本题主要考查等差等比数列的综合应用,以及用裂项相消法求和并证明不等式,考查学生的运算求解能力和推理证明能力.19、(1);(2)是,定点坐标为或【解析】
(1)根据相切得到,根据离心率得到,得到椭圆方程.(2)设直线的方程为,点、的坐标分别为,,联立方程得到,,计算点的坐标为,点的坐标为,圆的方程可化为,得到答案.【详解】(1)根据题意:,因为,所以,所以椭圆的方程为.(2)设直线的方程为,点、的坐标分别为,,把直线的方程代入椭圆方程化简得到,所以,,所以,,因为直线的斜率,所以直线的方程,所以点的坐标为,同理,点的坐标为,故以为直径的圆的方程为,又因为,,所以圆的方程可化为,令,则有,所以定点坐标为或.【点睛】本题考查了椭圆方程,圆过定点问题,意在考查学生的计算能力和综合应用能力.20、(Ⅰ);(Ⅱ)详见解析.【解析】
(Ⅰ)依题意在上存在两个极值点,等价于在有两个不等实根,由参变分类可得,令,利用导数研究的单调性、极值,从而得到参数的取值范围;(Ⅱ)由题解得,,要证成立,只需证:,即:,只需证:,设,即证:,再分别证明,即可;【详解】解:(Ⅰ)由题意可知,,在上存在两个极值点,等价于在有两个不等实根,由可得,,令,则,令,可得,当时,,所以在上单调递减,且当时,单调递增;当时,单调递减;所以是的极大值也是最大值,又当,当大于0趋向与0,要使在有两个根,则,所以的取值范围为;(Ⅱ)由题解得,,要证成立,只需证:即:,只需证:设,即证:要证,只需证:令,则在上为增函数,即成立;要证,只需证明:令,则在上为减函数,,即成立成立,所以成立.【点睛】本题考查利用导数研究函数的单调性、极值,利用导数证明不等式,属于难题;21、(1);(2).【解析】
(1)连接交于
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 个人租房合同下载
- 2024年度钢筋采购合同纠纷解决合同2篇
- 花卉绿植采购合同 花卉采购协议
- 二零二四年度技术转让合同标的描述2篇
- 河北农业大学现代科技学院《工程力学》2023-2024学年第一学期期末试卷
- 河北农业大学现代科技学院《给排水工程仪表与控制》2022-2023学年第一学期期末试卷
- 医疗合作共建协议书范本
- 河北农业大学现代科技学院《电路实验》2022-2023学年第一学期期末试卷
- 2024年度吊机设备管理与运营合同3篇
- 土建清包工合同范本
- 一年级语文上册 语文园地五:和大人一起读拔萝卜 课件(共11张PPT)
- 入瞳出瞳与光阑的位置
- 六年级上册数学圆中方方中圆经典题练习
- 危重患者的护理常规PPT课件
- 科学实验仪器台账[管理资料]
- 一元一次不等式复习课教案
- 零件提交保证书(PSW)---模版
- 结节病ppt课件
- 管道支架安装图集(共53页)
- 《物流设施与设备》期末试题与答案
- 财务费用报销流程图
评论
0/150
提交评论