专题18相交线与平行线篇(原卷版+解析)2_第1页
专题18相交线与平行线篇(原卷版+解析)2_第2页
专题18相交线与平行线篇(原卷版+解析)2_第3页
专题18相交线与平行线篇(原卷版+解析)2_第4页
专题18相交线与平行线篇(原卷版+解析)2_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题18相交线与平行线考点一:相交线与平行线之邻补角、对顶角知识回顾知识回顾邻补角:①定义:两条相交之间构成的四个角中,有公共顶点且有一条公共边,另一边互为反向延长线的两个角是邻补角。②性质:邻补角互补。对顶角:①定义:有公共顶点,两边均互为反向延长线的两个角是对顶角。②性质:对顶角相等。微专题微专题1.(2022•北京)如图,利用工具测量角,则∠1的大小为()第1题第2题A.30° B.60° C.120° D.150°2.(2022•苏州)如图,直线AB与CD相交于点O,∠AOC=75°,∠1=25°,则∠2的度数是()A.25° B.30° C.40° D.50°3.(2022•自贡)如图,直线AB、CD相交于点O,若∠1=30°,则∠2的度数是()A.30° B.40° C.60° D.150°4.(2022•桂林)如图,直线l1,l2相交于点O,∠1=70°,则∠2=°.考点二:相交线与平行线之垂直知识回顾知识回顾垂直的定义:两条直线相交形成的四个角中,若其中有一个角是90°,则此时我们说这两条直线垂直。用“⊥”表示。根据邻补角与对顶角的性质可知,此时四个角均等于90°。垂直的性质与判定:①性质:若两直线垂直,则形成的夹角是90°。②判定:若两直线形成的夹角等于90°,则这两条直线垂直。③在同一平面内,过一点有且只有一条直线与已知直线垂直。垂线段:①定义:过直线外一点画已知直线的垂线,点到垂足之间的线段叫做垂线段。②垂线段的性质:垂线段最短;垂线段的长度表示点到直线的距离。微专题微专题5.(2022•威海)图1是光的反射规律示意图.其中,PO是入射光线,OQ是反射光线,法线KO⊥MN,∠POK是入射角,∠KOQ是反射角,∠KOQ=∠POK.图2中,光线自点P射入,经镜面EF反射后经过的点是()A.A点 B.B点 C.C点 D.D点6.(2022•河南)如图,直线AB,CD相交于点O,EO⊥CD,垂足为O.若∠1=54°,则∠2的度数为()第6题第7题A.26° B.36° C.44° D.54°7.(2022•泸州)如图,直线a∥b,直线c分别交a,b于点A,C,点B在直线b上,AB⊥AC,若∠1=130°,则∠2的度数是()A.30° B.40° C.50° D.70°8.(2022•常州)如图,斑马线的作用是为了引导行人安全地通过马路.小丽觉得行人沿垂直马路的方向走过斑马线更为合理,这一想法体现的数学依据是()A.垂线段最短 B.两点确定一条直线 C.过一点有且只有一条直线与已知直线垂直 D.过直线外一点有且只有一条直线与已知直线平行考点三:相交线与平行线之平行线知识回顾知识回顾三线八角:同位角,内错角,同旁内角。平行线定义:两条永不相交的直线的位置关系是平行线。平行线性质:①两直线平行,同位角相等。②两直线平行,内错角相等。③两直线平行,同旁内角互补。④同一平面内,过直线外一点有且只有一条直线与已知直线平行。⑤平行于同一直线的两直线平行。即,则。平行线的判定:①同位角相等,两直线平行。②内错角相等,两直线平行。③同旁内角相等,两直线平行。④垂直于同一直线的两直线平行。即若,则。⑤平行于同一直线的两直线平行。即若,则。平行线间的距离:平行线间的距离处处相等。微专题微专题9.(2022•青海)数学课上老师用双手形象的表示了“三线八角”图形,如图所示(两大拇指代表被截直线,食指代表截线).从左至右依次表示()A.同旁内角、同位角、内错角 B.同位角、内错角、对顶角 C.对顶角、同位角、同旁内角 D.同位角、内错角、同旁内角10.(2022•贺州)如图,直线a,b被直线c所截,下列各组角是同位角的是()第10题第11题A.∠1与∠2 B.∠1与∠3 C.∠2与∠3 D.∠3与∠411.(2022•东营)如图,直线a∥b,一个三角板的直角顶点在直线a上,两直角边均与直线b相交,∠1=40°,则∠2=()A.40° B.50° C.60° D.65°(2022•资阳)将直尺和三角板按如图所示的位置放置.若∠1=40°,则∠2度数是()第12题第13题A.60° B.50° C.40° D.30°13.(2022•襄阳)已知直线m∥n,将一块含30°角的直角三角板ABC(∠ABC=30°,∠BAC=60°)按如图方式放置,点A,B分别落在直线m,n上.若∠1=70°.则∠2的度数为()A.30° B.40° C.60° D.70°14.(2022•锦州)如图,直线a∥b,将含30°角的直角三角板ABC(∠ABC=30°)按图中位置摆放,若∠1=110°,则∠2的度数为()第14题第15题A.30° B.36° C.40° D.50°15.(2022•六盘水)如图,a∥b,∠1=43°,则∠2的度数是()A.137° B.53° C.47° D.43°16.(2022•济南)如图,AB∥CD,点E在AB上,EC平分∠AED,若∠1=65°,则∠2的度数为()第16题第17题A.45° B.50° C.57.5° D.65°17.(2022•丹东)如图,直线l1∥l2,直线l3与l1,l2分别交于A,B两点,过点A作AC⊥l2,垂足为C,若∠1=52°,则∠2的度数是()A.32° B.38° C.48° D.52°18.(2022•南通)如图,a∥b,∠3=80°,∠1﹣∠2=20°,则∠1的度数是()第18题第19题A.30° B.40° C.50° D.80°19.(2022•西藏)如图,l1∥l2,∠1=38°,∠2=46°,则∠3的度数为()A.46° B.90° C.96° D.134°20.(2022•兰州)如图,直线a∥b,直线c与直线a,b分别相交于点A,B,AC⊥b,垂足为C.若∠1=52°,则∠2=()第20题第21题A.52° B.45° C.38° D.26°21.(2022•通辽)如图,一束光线AB先后经平面镜OM,ON反射后,反射光线CD与AB平行,当∠ABM=35°时,∠DCN的度数为()A.55° B.70° C.60° D.35°22.(2022•潍坊)如图是小亮绘制的潜望镜原理示意图,两个平面镜的镜面AB与CD平行,入射光线l与出射光线m平行.若入射光线l与镜面AB的夹角∠1=40°10',则∠6的度数为()A.100°40' B.99°80' C.99°40' D.99°20'23.(2022•新疆)如图,AB与CD相交于点O,若∠A=∠B=30°,∠C=50°,则∠D=()第23题第24题A.20° B.30° C.40° D.50°24.(2022•柳州)如图,直线a,b被直线c所截,若a∥b,∠1=70°,则∠2的度数是()A.50° B.60° C.70° D.110°25.(2022•雅安)如图,已知直线a∥b,直线c与a,b分别交于点A,B,若∠1=120°,则∠2=()第25题第26题A.60° B.120° C.30° D.15°26.(2022•宿迁)如图,AB∥ED,若∠1=70°,则∠2的度数是()A.70° B.80° C.100° D.110°27.(2022•陕西)如图,AB∥CD,BC∥EF.若∠1=58°,则∠2的大小为()第27题第28题A.120° B.122° C.132° D.148°28.(2022•吉林)如图,如果∠1=∠2,那么AB∥CD,其依据可以简单说成()A.两直线平行,内错角相等 B.内错角相等,两直线平行 C.两直线平行,同位角相等 D.同位角相等,两直线平行29.(2022•台州)如图,已知∠1=90°,为保证两条铁轨平行,添加的下列条件中,正确的是()A.∠2=90° B.∠3=90° C.∠4=90° D.∠5=90°30.(2022•郴州)如图,直线a∥b,且直线a,b被直线c,d所截,则下列条件不能判定直线c∥d的是()A.∠3=∠4 B.∠1+∠5=180° C.∠1=∠2 D.∠1=∠4专题18相交线与平行线考点一:相交线与平行线之邻补角、对顶角知识回顾知识回顾邻补角:①定义:两条相交之间构成的四个角中,有公共顶点且有一条公共边,另一边互为反向延长线的两个角是邻补角。②性质:邻补角互补。对顶角:①定义:有公共顶点,两边均互为反向延长线的两个角是对顶角。②性质:对顶角相等。微专题微专题1.(2022•北京)如图,利用工具测量角,则∠1的大小为()A.30° B.60° C.120° D.150°【分析】根据对顶角的性质解答即可.【解答】解:根据对顶角相等的性质,可得:∠1=30°,故选:A.2.(2022•苏州)如图,直线AB与CD相交于点O,∠AOC=75°,∠1=25°,则∠2的度数是()A.25° B.30° C.40° D.50°【分析】先求出∠BOD的度数,再根据角的和差关系得结论.【解答】解:∵∠AOC=75°,∴∠AOC=∠BOD=75°.∵∠1=25°,∠1+∠2=∠BOD,∴∠2=∠BOD﹣∠1=75°﹣25°=50°.故选:D.3.(2022•自贡)如图,直线AB、CD相交于点O,若∠1=30°,则∠2的度数是()A.30° B.40° C.60° D.150°【分析】根据对顶角相等可得∠2=∠1=30°.【解答】解:∵∠1=30°,∠1与∠2是对顶角,∴∠2=∠1=30°.故选:A.4.(2022•桂林)如图,直线l1,l2相交于点O,∠1=70°,则∠2=°.【分析】根据对顶角的性质解答即可.【解答】解:∵∠1和∠2是一对顶角,∴∠2=∠1=70°.故答案为:70.考点二:相交线与平行线之垂直知识回顾知识回顾垂直的定义:两条直线相交形成的四个角中,若其中有一个角是90°,则此时我们说这两条直线垂直。用“⊥”表示。根据邻补角与对顶角的性质可知,此时四个角均等于90°。垂直的性质与判定:①性质:若两直线垂直,则形成的夹角是90°。②判定:若两直线形成的夹角等于90°,则这两条直线垂直。③在同一平面内,过一点有且只有一条直线与已知直线垂直。垂线段:①定义:过直线外一点画已知直线的垂线,点到垂足之间的线段叫做垂线段。②垂线段的性质:垂线段最短;垂线段的长度表示点到直线的距离。微专题微专题5.(2022•威海)图1是光的反射规律示意图.其中,PO是入射光线,OQ是反射光线,法线KO⊥MN,∠POK是入射角,∠KOQ是反射角,∠KOQ=∠POK.图2中,光线自点P射入,经镜面EF反射后经过的点是()A.A点 B.B点 C.C点 D.D点【分析】根据直线的性质画出被遮住的部分,再根据入射角等于反射角作出判断即可.【解答】解:根据直线的性质补全图2并作出法线OK,如下图所示:根据图形可以看出OB是反射光线,故选:B.6.(2022•河南)如图,直线AB,CD相交于点O,EO⊥CD,垂足为O.若∠1=54°,则∠2的度数为()A.26° B.36° C.44° D.54°【分析】首先利用垂直的定义得到∠COE=90°,然后利用平角的定义即可求解.【解答】解:∵EO⊥CD,∴∠COE=90°,∵∠1+∠COE+∠2=180°,∴∠2=180°﹣∠1﹣∠COE=180°﹣54°﹣90°=36°.故选:B.7.(2022•泸州)如图,直线a∥b,直线c分别交a,b于点A,C,点B在直线b上,AB⊥AC,若∠1=130°,则∠2的度数是()A.30° B.40° C.50° D.70°【分析】首先利用平行线的性质得到∠1=∠DAC,然后利用AB⊥AC得到∠BAC=90°,最后利用角的和差关系求解.【解答】解:如图所示,∵直线a∥b,∴∠1=∠DAC,∵∠1=130°,∴∠DAC=130°,又∵AB⊥AC,∴∠BAC=90°,∴∠2=∠DAC﹣∠BAC=130°﹣90°=40°.故选:B.8.(2022•常州)如图,斑马线的作用是为了引导行人安全地通过马路.小丽觉得行人沿垂直马路的方向走过斑马线更为合理,这一想法体现的数学依据是()A.垂线段最短 B.两点确定一条直线 C.过一点有且只有一条直线与已知直线垂直 D.过直线外一点有且只有一条直线与已知直线平行【分析】根据生活经验结合数学原理解答即可.【解答】解:小丽觉得行人沿垂直马路的方向走过斑马线更为合理,这一想法体现的数学依据是垂线段最短,故选:A.考点三:相交线与平行线之平行线知识回顾知识回顾三线八角:同位角,内错角,同旁内角。平行线定义:两条永不相交的直线的位置关系是平行线。平行线性质:①两直线平行,同位角相等。②两直线平行,内错角相等。③两直线平行,同旁内角互补。④同一平面内,过直线外一点有且只有一条直线与已知直线平行。⑤平行于同一直线的两直线平行。即,则。平行线的判定:①同位角相等,两直线平行。②内错角相等,两直线平行。③同旁内角相等,两直线平行。④垂直于同一直线的两直线平行。即若,则。⑤平行于同一直线的两直线平行。即若,则。平行线间的距离:平行线间的距离处处相等。微专题微专题9.(2022•青海)数学课上老师用双手形象的表示了“三线八角”图形,如图所示(两大拇指代表被截直线,食指代表截线).从左至右依次表示()A.同旁内角、同位角、内错角 B.同位角、内错角、对顶角 C.对顶角、同位角、同旁内角 D.同位角、内错角、同旁内角【分析】两条线a、b被第三条直线c所截,在截线的同旁,被截两直线的同一方,把这种位置关系的角称为同位角;两个角分别在截线的异侧,且夹在两条被截线之间,具有这样位置关系的一对角互为内错角;两个角都在截线的同一侧,且在两条被截线之间,具有这样位置关系的一对角互为同旁内角.据此作答即可.【解答】解:根据同位角、内错角、同旁内角的概念,可知第一个图是同位角,第二个图是内错角,第三个图是同旁内角.故选:D.10.(2022•贺州)如图,直线a,b被直线c所截,下列各组角是同位角的是()A.∠1与∠2 B.∠1与∠3 C.∠2与∠3 D.∠3与∠4【分析】同位角就是:两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角.【解答】解:根据同位角、邻补角、对顶角的定义进行判断,A、∠1和∠2是对顶角,故A错误;B、∠1和∠3是同位角,故B正确;C、∠2和∠3是内错角,故C错误;D、∠3和∠4是邻补角,故D错误.故选:B.11.(2022•东营)如图,直线a∥b,一个三角板的直角顶点在直线a上,两直角边均与直线b相交,∠1=40°,则∠2=()A.40° B.50° C.60° D.65°【分析】先由已知直角三角板得∠4=90°,然后由∠1+∠3+∠4=180°,求出∠3的度数,再由直线a∥b,根据平行线的性质,得出∠2=∠3=50°.【解答】解:如图:∵∠4=90°,∠1=40°,∠1+∠3+∠4=180°,∴∠3=180°﹣90°﹣40°=50°,∵直线a∥b,∴∠2=∠3=50°.故选:B.12.(2022•资阳)将直尺和三角板按如图所示的位置放置.若∠1=40°,则∠2度数是()A.60° B.50° C.40° D.30°【分析】如图,易知三角板的∠A为直角,直尺的两条边平行,则可得∠1的对顶角和∠2的同位角互为余角,即可求解.【解答】解:如图,根据题意可知∠A为直角,直尺的两条边平行,∴∠2=∠ACB,∵∠ACB+∠ABC=90°,∠ABC=∠1,∴∠2=90°﹣∠1=90°﹣40°=50°,故选:B.13.(2022•襄阳)已知直线m∥n,将一块含30°角的直角三角板ABC(∠ABC=30°,∠BAC=60°)按如图方式放置,点A,B分别落在直线m,n上.若∠1=70°.则∠2的度数为()A.30° B.40° C.60° D.70°【分析】根据平行线的性质求得∠ABD,再根据角的和差关系求得结果.【解答】解:∵m∥n,∠1=70°,∴∠1=∠ABD=70°,∵∠ABC=30°,∴∠2=∠ABD﹣∠ABC=40°,故选:B.14.(2022•锦州)如图,直线a∥b,将含30°角的直角三角板ABC(∠ABC=30°)按图中位置摆放,若∠1=110°,则∠2的度数为()A.30° B.36° C.40° D.50°【分析】根据平行线的性质可得∠3=∠1=110°,则有∠4=70°,然后根据三角形外角的性质可求解.【解答】解:如图,∵a∥b,∠1=110°,∴∠3=∠1=110°,∴∠4=180°﹣∠3=70°,∵∠B=30°∴∠2=∠4﹣∠B=40°;故选:C.15.(2022•六盘水)如图,a∥b,∠1=43°,则∠2的度数是()A.137° B.53° C.47° D.43°【分析】根据平行线的性质,得∠2=∠1=43°.【解答】解:∵a∥b,∠1=43°,∴∠2=∠1=43°.故选:D.16.(2022•济南)如图,AB∥CD,点E在AB上,EC平分∠AED,若∠1=65°,则∠2的度数为()A.45° B.50° C.57.5° D.65°【分析】根据平行线的性质,由AB∥CD,得∠AEC=∠1=65°.根据角平分线的定义,得EC平分∠AED,那么∠AED=2∠AEC=130°,进而求得∠2=180°﹣∠AED=50°.【解答】解:∵AB∥CD,∴∠AEC=∠1=65°.∵EC平分∠AED,∴∠AED=2∠AEC=130°.∴∠2=180°﹣∠AED=50°.故选:B.17.(2022•丹东)如图,直线l1∥l2,直线l3与l1,l2分别交于A,B两点,过点A作AC⊥l2,垂足为C,若∠1=52°,则∠2的度数是()A.32° B.38° C.48° D.52°【分析】根据平行线的性质求出∠ABC,根据三角形内角和定理求出即可.【解答】解:∵直线l1∥l2,∠1=52°,∴∠ABC=∠1=52°,∵AC⊥l2,∴∠ACB=90°,∴∠2=180°﹣∠ABC﹣∠ACB=180°﹣52°﹣90°=38°,故选:B.18.(2022•南通)如图,a∥b,∠3=80°,∠1﹣∠2=20°,则∠1的度数是()A.30° B.40° C.50° D.80°【分析】根据平行线的性质可得∠1=∠4,然后根据三角形的外角可得∠3=∠4+∠2,从而可得∠1+∠2=80°,最后进行计算即可解答.【解答】解:如图:∵a∥b,∴∠1=∠4,∵∠3是△ABC的一个外角,∴∠3=∠4+∠2,∵∠3=80°,∴∠1+∠2=80°,∵∠1﹣∠2=20°,∴2∠1+∠2﹣∠2=100°,∴∠1=50°,故选:C.19.(2022•西藏)如图,l1∥l2,∠1=38°,∠2=46°,则∠3的度数为()A.46° B.90° C.96° D.134°【分析】根据平行线的性质定理求解即可.【解答】解:∵l1∥l2,∴∠1+∠3+∠2=180°,∵∠1=38°,∠2=46°,∴∠3=96°,故选:C.20.(2022•兰州)如图,直线a∥b,直线c与直线a,b分别相交于点A,B,AC⊥b,垂足为C.若∠1=52°,则∠2=()A.52° B.45° C.38° D.26°【分析】根据平行线的性质可得∠ABC=52°,根据垂直定义可得∠ACB=90°,然后利用直角三角形的两个锐角互余,进行计算即可解答.【解答】解:∵a∥b,∴∠1=∠ABC=52°,∵AC⊥b,∴∠ACB=90°,∴∠2=90°﹣∠ABC=38°,故选:C.21.(2022•通辽)如图,一束光线AB先后经平面镜OM,ON反射后,反射光线CD与AB平行,当∠ABM=35°时,∠DCN的度数为()A.55° B.70° C.60° D.35°【分析】根据“两直线平行,同旁内角互补”解答即可.【解答】解:∵∠ABM=35°,∠ABM=∠OBC,∴∠OBC=35°,∴∠ABC=180°﹣∠ABM﹣∠OBC=180°﹣35°﹣35°=110°,∵CD∥AB,∴∠ABC+∠BCD=180°,∴∠BCD=180°﹣∠ABC=70°,∵∠BCO=∠DCN,∠BCO+∠BCD+∠DCN=180°,∴∠DCN=(180°﹣∠BCD)=55°,故选:A.22.(2022•潍坊)如图是小亮绘制的潜望镜原理示意图,两个平面镜的镜面AB与CD平行,入射光线l与出射光线m平行.若入射光线l与镜面AB的夹角∠1=40°10',则∠6的度数为()A.100°40' B.99°80' C.99°40' D.99°20'【分析】先根据反射角等于入射角求出∠2的度数,再求出∠5的度数,最后根据平行线的性质得出即可.【解答】解:∵入射角等于反射角,∠1=40°10',∴∠2=∠1=40°10',∵∠1+∠2+∠5=180°,∴∠5=180°﹣40°10'﹣40°10'=99°40',∵入射光线l与出射光线m平行,∴∠6=∠5=99°40'.故选:C.23.(2022•新疆)如图,AB与CD相交于点O,若∠A=∠B=30°,∠C=50°,则∠D=()A.20° B.30° C.40° D.50°【分析】根据∠A=∠B=30°,得出AC∥DB,即可得出∠D=∠C=50°.【解答】解:∵∠A=∠B=30°,∴AC∥DB,又∵∠C=50°,∴∠D=∠C=50°,故选:D.24.(2022•柳州)如图,直线a,b被直线c所截,若a∥b,∠1=70°,则∠2的度数是()A.50° B.60° C.70° D.110°【分析】由两直线平行,同位角相等可知∠2=∠1.【解答】解:∵a∥b,∴∠2=∠1=70°.故选:C.25.(2022•雅安)如图,已知直线a∥b,直线c与a,b分别交于点A,B,若∠1=120°,则∠2=()A.60° B.120° C.30° D.15°【分析】本题要注意到∠1的对顶角与∠2同旁内角,并且两边互相平行,可以考虑平行线的性质及对顶角相等.【解答】解:∵∠1=120°,∴它的对顶角是120°,∵a∥b,∴∠2=60°

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论