版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025年中考数学一轮复习之不等式与不等式组
选择题(共10小题)
2(x—1)>%+1
1.不等式组曝_1的解集是()
<x+l
A.尤>3B.xW2C.2cxW5D.3<x^5
2.若点尸(a+1,2-2a)在第一象限,则a的取值范围在数轴上表示为()
3.若|2a-2|=2-2a,则a的取值范围在数轴上表示正确的是()
111(
A.-2-102
।।।《A
B.-2-102
1A
C.-2-102
-1------1-----1——<'——
D.-2-1012
4.小明为了估算玻璃球的体积,做了如下实验:在一个容量为600c"#的杯子中倒入420a〃3的水;再将
同样的玻璃球逐个放入水中,发现在放第5个时水未满溢出,但当放入第6个时,发现水满溢出.根据
以上的过程,推测这样一颗玻璃球的体积范围是()
BHH
A.25cm3以上,30cm3以下
B.30。点以上,33c疗以下
C.30cm3以上,36cm3以下
D.33cm3以上,36cm3以下
5.不等式组I(X—+31]V。0中的两个不等式的解集在同一个数轴上表示正确的是()
6.如果加<〃,那么下列结论错误的是(
A.m+2<n+2B.-2m<-InC.2m<-2nD.m-2<n-2
7.下列不等式一定成立的是()
32
A.3。>2〃B.2Z?+1<3Z?+1C.2-x<3-xD.一V-
cc
8.不等式2x-2<0的解集在数轴上表示正确的是()
A
c
对于实数a,b,定义一种运算“凶":a®b=G-ab,那么不等式组2凶”>°的解集在数轴上表
1(-2)0%<0
示为()
C.-2D.
10.已知点A(2-〃,a+1)在第一象限,则〃的取值范围是(
A.a>2B.-l<a<2C.-2<a<-1D.a<l
二.填空题(共5小题)
11.不等式组p—xVO的最小整数解为
t2x-1>2
12.若关于x的不等式-组-1有解,则a的取值范围为_________.
I乙1人~I.L)WKJJC-I--L
13.如图表示某个关于x的不等式的解集,若无=根-2是该不等式的一个解,则m的取值范围
是___________
—d—
3m+8
14.定义一种新运算:核例如:203=2-2X3=-4.根据上述定义,不等式组{案建「的
整数解为.
15.把一批书分给小朋友,每人3本,则余8本;每人5本,则最后一个小朋友得到书且不足3本,这批
书有本.
三.解答题(共5小题)
V—12%+1
16.解不等式一厂-一二21.小明解答过程如表,请指出其中错误步骤的序号,并写出正确的解答过
23
程.
解:去分母得:3(尤-1)-2(2x+l)…①
去括号得:3x-3-4x+l2l…②
移项得:3x-4x2l+3-1…③
合并同类项得:-尤23…④
两边都除以-1得:X2-3…⑤
(X-3(%-2)>4
17.解不等式组:,-1+2X.
x—1V―g-
18.某经销商计划购进A,8两种农产品.已知购进A种农产品2件,8种农产品3件,共需690元;购
进A种农产品1件,8种农产品4件,共需720元.
(1)A,2两种农产品每件的价格分别是多少元?
(2)该经销商计划用不超过5400元购进A,8两种农产品共40件.如果该经销商将购进的农产品按
照A种每件160元,B种每件200元的价格全部售出,那么购进A,B两种农产品各多少件时获利最多?
19.某电子产品店两次购进甲和乙两种品牌耳机的数量和总费用如下表:
第一次第二次
甲品牌耳机(个)2030
乙品牌耳机(个)4050
总费用(元)1080014600
(1)甲、乙两种品牌耳机的进价各是多少元?
(2)商家第三次进货计划购进两种品牌耳机共200个,其中甲品牌耳机数量不少于30个,在采购总价
不超过35000元的情况下,最多能购进多少个甲品牌耳机?
20.2023年9月15日至17日,第二届湖南旅游发展大会在郴州市隆重举行,大会吉祥物“山侠”和“水
仙”,以郴州的“山之侠气”“水之仙气”为灵感创作.
(1)某商店用3600元共购进“山侠”和“水仙”两种吉祥物公仔110个,用于购买“山侠”公仔与购
买“水仙”公仔的总费用相同,且“山侠”公仔的单价是“水仙”公仔的1.2倍.求该商店购进的“山
侠”和“水仙”公仔的单价分别是多少元?
(2)吉祥物很受欢迎,公仔很快就卖完了,该商店计划用不超过10200元的资金再次购进“山侠”和
“水仙”两种吉祥物公仔共300个.已知两种公仔的进价不变,求“山侠”公仔最多能购进多少个.
2025年中考数学一轮复习之不等式与不等式组
参考答案与试题解析
一.选择题(共10小题)
2(x-l)>x+l
1.不等式组,5x-l1的解集是(
-x+1
A.尤>3B.尤(2C.2<xW5D.3<x<5
【考点】解一元一次不等式组.
【专题】一元一次不等式(组)及应用;运算能力.
【答案】D
【分析】按照解一元一次不等式组的步骤进行计算,即可解答.
'2(x-l)>x+l(P
【解答】解:
但《久+1②’
解不等式①得:尤>3,
解不等式②得:尤W5,
...原不等式组的解集为:3VxW5,
故选:D.
【点评】本题考查了解一元一次不等式组,熟练掌握解一元一次不等式组的步骤是解题的关键.
2.若点尸(cz+1,2-2a)在第一象限,则”的取值范围在数轴上表示为()
【考点】解一元一次不等式组;点的坐标;在数轴上表示不等式的解集.
【专题】一元一次不等式(组)及应用;运算能力.
【答案】C
【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小
找不到确定不等式组的解集.
【解答】解:;点尸(。+1,2-2a)在第一象限,
.(a+1〉0
,12-2a>0,
解得-
故选:C.
【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同
小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
3.若|2a-2|=2-2a,则a的取值范围在数轴上表示正确的是()
-I------1--------1——1——L->
A.-2-1012
-I-------1--------1---------i--------L->
B.-2-1012
-J-------1--------1——1——L->
C.-2-1012
-1------1--------1——i——
D.-2-1012
【考点】在数轴上表示不等式的解集;绝对值.
【专题】实数;几何直观.
【答案】C
【分析】由|2a-2|=2-2a,可得2a-2W0,再解不等式求出解集即可.
【解答】解::|2a-2|=2-2a,
.\2a-2^0,
解得aWl,
则的取值范围在数轴上表示正确的是:
故选:C.
-I——।——।——1——
-2-1012
【点评】本题考查了在数轴上表示不等式的解集,根据绝对值的性质求出。的取值范围是解此题的关键.
4.小明为了估算玻璃球的体积,做了如下实验:在一个容量为600c/3的杯子中倒入420cv"3的水;再将
同样的玻璃球逐个放入水中,发现在放第5个时水未满溢出,但当放入第6个时,发现水满溢出.根据
以上的过程,推测这样一颗玻璃球的体积范围是()
A.25cm3以上,30cm3以下
B.30<?利3以上,33c/以下
C.30cm3以上,36cm3以下
D.33cm3以上,36cm3以下
【考点】一元一次不等式组的应用.
【专题】一元一次不等式(组)及应用;应用意识.
【答案】C
【分析】根据题意列出不等式组,再解出不等式组的解集即可.
【解答】解:根据题意,设一颗玻璃球的体积为XC7,,
5%<600-420
则有:
6%>600-420
解得:30Vx<36,
一■颗玻璃球的体积在30cm3以上,36c7/以下,
故选:C.
【点评】本题考查一元一次不等式组的应用,根据题意列出不等式组是关键.
(X—1V0
5.不等式组,&中的两个不等式的解集在同一个数轴上表示正确的是()
(x+3>0
4»»।।I—
A.-3-2-101B.-3-2-101
—L~।।_।_।_>1»
c.-3-2-101D,-3-2-101
【考点】解一元一次不等式组;在数轴上表示不等式的解集.
【专题】一元一次不等式(组)及应用;运算能力.
【答案】A
【分析】先分别解两个不等式得到-3VxWl,然后利用数轴表示出-3VxWl,即可得到正确的选项.
【解答】解:解不等式x-lWO得xWl,
解不等式%+3>0得%>-3,
所以不等式组的两个不等式的解集在同一个数轴上表示正确的是:-3-2-101.
故选:A.
【点评】本题考查了在数轴上表示不等式的解集:用数轴表示不等式的解集时,要注意“两定”:一是
定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于
解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.
6.如果根<〃,那么下列结论错误的是()
A.m+2<n+2B.-2m<-InC.2m<2nD.m-2<n-2
【考点】不等式的性质.
【专题】一元一次不等式(组)及应用;推理能力.
【答案】B
【分析】根据机<〃,应用不等式的性质,逐项判断即可.
【解答】解:•..机〈小
m+2<n+2,
选项A不符合题意;
-2m>-2n,
,选项8符合题意;
.:m〈n,
2m<2n,
选项C不符合题意;
:・m-2<n-2,
,选项D不符合题意.
故选:B.
【点评】此题主要考查了不等式的性质:(1)不等式的两边同时加上(或减去)同一个数或同一个含有
字母的式子,不等号的方向不变;(2)不等式的两边同时乘(或除以)同一个正数,不等号的方向不变;
(3)不等式的两边同时乘(或除以)同一个负数,不等号的方向改变.
7.下列不等式一定成立的是()
32
A.3d>2aB.2Z?+1<3Z?+1C.2-x<3-xD.-<T—
cc
【考点】不等式的性质.
【专题】一元一次不等式(组)及应用;推理能力.
【答案】c
【分析】根据不等式的性质,逐项判断即可.
【解答】解:时,3a>2。不成立,
选项A不符合题意;
时,26+K36+1不成立,
;•选项8不符合题意;
'.*2-尤<3-x一定成立,
.•.选项C符合题意;
,32
Vc>0时,一>一,
cc
选项。不符合题意.
故选:C.
【点评】此题主要考查了不等式的性质:(1)不等式的两边同时加上(或减去)同一个数或同一个含有
字母的式子,不等号的方向不变;(2)不等式的两边同时乘(或除以)同一个正数,不等号的方向不变;
(3)不等式的两边同时乘(或除以)同一个负数,不等号的方向改变.
8.不等式2尤-2W0的解集在数轴上表示正确的是()
A.-2-1012B.-2-1012
C.-2-1012D.-2-1012
【考点】解一元一次不等式;在数轴上表示不等式的解集.
【答案】D
【分析】利用不等式的基本性质,移项后再除以2,不等号的方向不变.
【解答】解:移项,得2xW2,
系数化为1,得尤W1,
不等式的解集在数轴上表示如下:
----------1---!1_L_--->
-5-4-3-2-10123.
故选:D.
【点评】本题考查了解一元一次不等式,解不等式要依据不等式的基本性质,在不等式的两边同时加上
或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不
变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.
9.对于实数a,b,定义一种运算“凶”:a0b^a2-ab,那么不等式组的解集在数轴上表
1(-2)<0
示为()
【考点】解一元一次不等式组;在数轴上表示不等式的解集.
【专题】一元一次不等式(组)及应用;运算能力.
【答案】B
【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小
找不到确定不等式组的解集.
【解答】解:由2&>0得:4-2x>0,解得x<2,
由(-2)0xW0得:4+2xW0,解得xW-2,
解集表示在数轴上如下:
-201
所以不等式组的解集为-2,
故选:B.
【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同
小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
10.已知点A(2-a,a+1)在第一象限,则a的取值范围是()
A.a>2B.-l<a<2C.-2<a<-1D.a<l
【考点】解一元一次不等式组;点的坐标.
【专题】一元一次不等式(组)及应用;运算能力.
【答案】B
【分析】根据点在第一象限的条件是:横坐标是正数,纵坐标是正数求解即可.
【解答】解::点A(2-a,a+1)在第一象限,
2-a>0
a+l>0
解得:-l<a<2.
故选:B.
【点评】本题考查解一元一次不等式组,掌握坐标平面被两条坐标轴分成了四个象限,每个象限内的点
的坐标符号的特点是解题的关键.
填空题(共5小题)
11.不等式组—的最小整数解为2.
【考点】一元一次不等式组的整数解.
【专题】一元一次不等式(组)及应用;运算能力.
【答案】见试题解答内容
【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小
找不到确定不等式组的解集.
【解答】解:由1-x<0得:尤>1,
由2xT>2得:x>
则不等式组的解集为壮宗
最小整数解为2.
故答案为:2.
【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同
小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
12.若关于尤的不等式组考:詈1,〜,1有解,则a的取值范围为6-1.
(乙-IJ.j~T.L
【考点】解一元一次不等式组.
【专题】一元一次不等式(组)及应用;运算能力.
【答案】-1.
【分析】解含参的不等式组,然后结合已知条件确定a的取值范围即可.
【解答】解:户口‘°⑦
l2(x+1)>3x+1(2)
由①得:尤》-a,
由②得:尤W1,
..•原不等式组有解,
♦.-aW1,
解得:a2-1,
故答案为:-L
【点评】本题考查根据含参不等式组是否有解确定参数的取值范围,解不等式组求得-aWl是解题的
关键.
13.如图表示某个关于尤的不等式的解集,若x=m-2是该不等式的一个解,则m的取值范围是
-5.
3m+8
【考点】在数轴上表示不等式的解集.
【专题】一元一次不等式(组)及应用;运算能力.
【答案】m<-5.
【分析】由图形得:尤>3,w+8,根据x=w-2是该不等式的一个解得出相-2>3祖+8,据此进一步求解
即可.
【解答】解:由图形得:x>3/71+8,
因为-2是x>3/M+8的一个解,
所以m-2>3〃z+8,
所以m<-5,
故答案为:m<-5.
【点评】本题主要考查在数轴上表示不等式的解集、解一元一次不等式,严格遵循解不等式的基本步骤
是解题的关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.
14.定义一种新运算:-ab,例如:203=2-2X3=-4.根据上述定义,不等式组产划]「的
(%09z<1
整数解为-1,0,I.
【考点】一元一次不等式组的整数解;有理数的混合运算.
【专题】新定义;一元一次不等式(组)及应用;运算能力.
【答案】-1,0,1.
【分析】根据a®b=a-ab,可以将不等式组产港孑「转化为1一泞」,然后求解即可.
(%02<11%-2%<1
【解答】解:由题意可得,
不等式组『鸳三转化为『-汽
解得_l^x<1.
所以不等式组产口分「的整数解为-1,0,1.
1%S:1
故答案为:T,0,1.
【点评】本题考查解一元一次不等式组的整数解以及有理数的混合运算,解答本题的关键是明确新定义,
会利用新定义转化不等式组.
15.把一批书分给小朋友,每人3本,则余8本;每人5本,则最后一个小朋友得到书且不足3本,这批
书有26本.
【考点】一元一次不等式组的应用.
【专题】一元一次不等式(组)及应用;应用意识.
【答案】26.
【分析】设共有x名小朋友,则共有(3x+8)本书,根据“每人5本,则最后一个小朋友得到书且不足
3本”,即可得出关于尤的一元一次不等式组,解之即可得出x的取值范围,再结合x为正整数即可得出
x的值,再将其代入(3x+8)中即可求出结论.
【解答】解:设共有x名小朋友,则共有(3x+8)本书,
依题意得:俨+82久-1),
(3%+80(%—1)+3
1
解得:5<x<6-,
又:尤为正整数,
・・x=6,
:.3x4-8=26.
故答案为:26.
【点评】本题考查了一元一次不等式组的应用,根据各数量之间的关系,正确列出一元一次不等式组是
解题的关键.
三.解答题(共5小题)
V—12%+1
16.解不等式一l-一丁之1.小明解答过程如表,请指出其中错误步骤的序号,并写出正确的解答过
23
程.
解:去分母得:3(x-1)-2(2x+l)21…①
去括号得:3x-3-4x+121…②
移项得:3x-4尤21+3T…③
合并同类项得:-尤>3…④
两边都除以-1得:G-3…⑤
【考点】解一元一次不等式.
【专题】一元一次不等式(组)及应用;运算能力.
【答案】错误步骤:①②⑤,正确的解答过程见解答.
【分析】按照解一元一次不等式的步骤进行计算,逐一判断即可解答.
【解答】解:错误步骤:①②⑤,
正确的解答过程如下:
x-12x+l
->1,
2....3
3(x-1)-2(2x+l)》6,
3x-3-4x-2》6,
3x-4尤26+3+2,
-
xW-11.
【点评】本题考查了解一元一次不等式,熟练掌握解一元一次不等式的步骤是解题的关键.
x—3(%—2)>4
17.解不等式组:.
x—1<—一
【考点】解一元一次不等式组.
【专题】一元一次不等式(组)及应用;运算能力.
【答案】尤W1.
【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小
找不到确定不等式组的解集.
【解答】解:解不等式x-3(尤-2)24,得:xWl,
解不等式尤-IV士笠,得:尤<4,
则不等式组的解集为xWl.
【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同
小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
18.某经销商计划购进A,8两种农产品.已知购进A种农产品2件,8种农产品3件,共需690元;购
进A种农产品1件,B种农产品4件,共需720元.
(1)A,8两种农产品每件的价格分别是多少元?
(2)该经销商计划用不超过5400元购进A,B两种农产品共40件.如果该经销商将购进的农产品按
照A种每件160元,B种每件200元的价格全部售出,那么购进A,B两种农产品各多少件时获利最多?
【考点】一元一次不等式的应用;一次函数的应用;二元一次方程组的应用.
【专题】一次方程(组)及应用;一元一次不等式(组)及应用;一次函数及其应用;应用意识.
【答案】(1)A种农产品每件的进价是120元,8种农产品每件的进价是150元;
(2)当购进20件A种农产品、20件B种农产品时,获利最多.
【分析】(1)设A种农产品每件的进价是x元,B种农产品每件的进价是y元,根据“购进A种农产品
2件,8种农产品3件,共需690元;购进A种农产品1件,B种农产品4件,共需720元”,可列出关
于x,y的二元一次方程组,解之即可得出结论;
(2)设购进机件A种农产品,则购进(40-加)件8种农产品,利用进货总价=进货单价义进货数量,
结合进货总价不超过5400元,可列出关于相的一元一次不等式,解之可得出机的取值范围,设购进的
A,B两种农产品全部售出后获得的总利润为w元,利用总利润=每件A种农产品的销售利润X购进数
量+每件8种农产品的销售利润又购进数量,可找出w关于他的函数关系式,再利用一次函数的性质,
即可解决最值问题.
【解答】解:(1)设A种农产品每件的进价是x元,8种农产品每件的进价是y元,
根据题意得:{范葭7祟,
解得:
答:A种农产品每件的进价是120元,B种农产品每件的进价是150元;
(2)设购进机件A种农产品,则购进(40件B种农产品,
根据题意得:120m+150(40-m)W5400,
解得:加220.
设购进的A,8两种农产品全部售出后获得的总利润为w元,则卬=(160-120)m+(200-150)(40
-m),
gp-10m+2000,
-10<0,
・・・w随机的增大而减小,
,当优=20时,w取得最大值,此时40-优=40-20=20.
答:当购进20件A种农产品、20件B种农产品时,获利最多.
【点评】本题考查了二元一次方程组的应用、一元一次不等式的应用以及一次函数的应用,解题的关键
是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,找出w关于机的函
数关系式.
19.某电子产品店两次购进甲和乙两种品牌耳机的数量和总费用如下表:
第一次第二次
甲品牌耳机(个)2030
乙品牌耳机(个)4050
总费用(元)1080014600
(1)甲、乙两种品牌耳机的进价各是多少元?
(2)商家第三次进货计划购进两种品牌耳机共200个,其中甲品牌耳机数量不少于30个,在采购总价
不超过35000元的情况下,最多能购进多少个甲品牌耳机?
【考点】一元一次不等式组的应用;二元一次方程组的应用.
【专题】一次方程(组)及应用;一元一次不等式(组)及应用;应用意识.
【答案】(1)甲品牌耳机的进价是220元,乙品牌耳机的进价是160元;
(2)最多能购进50个甲品牌耳机.
【分析】(1)设甲品牌耳机的进价是x元,乙品牌耳机的进价是y元,利用总价=单价X数量,结合第
一、二次够级两种品牌耳机的数量及所需总费用,可列出关于x,y的二元一次方程组,解之即可得出
结论;
(2)设第三次购进相个甲品牌耳机,则购进(200-777)个乙品牌耳机,根据“第三次购进甲品牌耳机
数量不少于30个,且总价不超过35000元”,可列出关于机的一元一次不等式组,解之可得出机的取
值范围,再取其中的最大值即可得出结论.
【解答】解:(1)设甲品牌耳机的进价是尤元,乙品牌耳机的进价是y元,
相福颖音得[20x+4°y=10800
根据达思后:(30%+50y=146001
即产+2,=540
1(3x+5y=1460'
解得:(J:160-
答:甲品牌耳机的进价是220元,乙品牌耳机的进价是160元;
(2)设第三次购进加个甲品牌耳机,则购进(200-//1)个乙品牌耳机,
根据题意得:[220m+160(200-m)<35000,
解得:30Wm(50,
:.m的最大值为50.
答:最多能购进50个甲品牌耳机.
【点评】本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等
量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组.
20.2023年9月15日至17日,第二届湖南旅游发展大会在郴州市隆重举行,大会吉祥物“山侠”和“水
仙”,以郴州的“山之侠气”“水之仙气”为灵感创作.
(1)某商店用3600元共购进“山侠”和“水仙”两种吉祥物公仔110个,用于购买“山侠”公仔与购
买“水仙”公仔的总费用相同,且“山侠”公仔的单价是“水仙”公仔的1.2倍.求该商店购进的“山
侠”和“水仙”公仔的单价分别是多少元?
(2)吉祥物很受欢迎,公仔很快就卖完了,该商店计划用不超过10200元的资金再次购进“山侠”和
“水仙”两种吉祥物公仔共300个.已知两种公仔的进价不变,求“山侠”公仔最多能购进多少个.
【考点】一元一次不等式的应用;分式方程的应用.
【专题】分式方程及应用;一元一次不等式(组)及应用;应用意识.
【答案】(1)该商店购进“山侠”公仔的单价是36元,“水仙”公仔的单价是30元;
(2)“山侠”公仔最多能购进200个.
【分析】(1)设该商店购进“水仙”公仔的单价是尤元,则购进“山侠”公仔的单价是L2x元,利用
数量=总价+单价,结合该商店共购进“山侠”和“水仙”两种吉祥物公仔110个,可列出关于尤的分
式方程,解之经检验后,可得出x的值(即购进“水仙”公仔的单价),再将其代入1.2%中,即可求出
购进“山侠”公仔的单价;
(2)设再次购进y个“山侠”公仔,则购进(300-y)个“水仙”公仔,利用总价=单价X数量,结
合总价不超过10200,可列出关于y的一元一次不等式,解之取其中的最大值,即可得出结论.
【解答】解:(1)设该商店购进“水仙”公仔的单价是x元,则购进“山侠”公仔的单价是1.2x元,
36003600
根据题意得:^+―=110,
1.2%%
解得:%=30,
经检验,I=30是所列方程的解,且符合题意,
・•・1.2=1.2X30=36.
答:该商店购进“山侠”公仔的单价是36元,“水仙”公仔的单价是30元;
(2)设再次购进y个“山侠”公仔,则购进(300-y)个“水仙”公仔,
根据题意得:36y+30(300-y)W10200,
解得:yW200,
的最大值为200.
答:“山侠”公仔最多能购进200个.
【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,
正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.
考点卡片
1.绝对值
(1)概念:数轴上某个数与原点的距离叫做这个数的绝对值.
①互为相反数的两个数绝对值相等;
②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.
③有理数的绝对值都是非负数.
(2)如果用字母。表示有理数,则数。绝对值要由字母。本身的取值来确定:
①当a是正有理数时,a的绝对值是它本身。;
②当。是负有理数时,。的绝对值是它的相反数-a;
③当。是零时,。的绝对值是零.
即|a|={a(a>0)0(a=0)-a(a<0)
2.有理数的混合运算
(1)有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计
算;如果有括号,要先做括号内的运算.
(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.
【规律方法】有理数混合运算的四种运算技巧
1.转化法:一是将除法转化为乘法,二是将乘方转化为乘法,三是在乘除混合运算中,通常将小数转化
为分数进行约分计算.
2.凑整法:在加减混合运算中,通常将和为零的两个数,分母相同的两个数,和为整数的两个数,乘积
为整数的两个数分别结合为一组求解.
3.分拆法:先将带分数分拆成一个整数与一个真分数的和的形式,然后进行计算.
4.巧用运算律:在计算中巧妙运用加法运算律或乘法运算律往往使计算更简便.
3.二元一次方程组的应用
(一)列二元一次方程组解决实际问题的一般步骤:
(1)审题:找出问题中的已知条件和未知量及它们之间的关系.
(2)设元:找出题中的两个关键的未知量,并用字母表示出来.
(3)列方程组:挖掘题目中的关系,找出两个等量关系,列出方程组.
(4)求解.
(5)检验作答:检验所求解是否符合实际意义,并作答.
(二)设元的方法:直接设元与间接设元.
当问题较复杂时,有时设与要求的未知量相关的另一些量为未知数,即为间接设元.无论怎样设元,设几
个未知数,就要列几个方程.
4.分式方程的应用
1、列分式方程解应用题的一般步骤:设、歹U、解、验、答.
必须严格按照这5步进行做题,规范解题步骤,另外还要注意完整性:如设和答叙述要完整,要写出单位
等.
2、要掌握常见问题中的基本关系,如行程问题:速度=路程时间;工作量问题:工作效率=工作量工作
时间
-vj*-vf*.
列分式方程解应用题一定要审清题意,找相等关系是着眼点,要学会分析题意,提高理解能力.
5.不等式的性质
(1)不等式的基本性质
①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,即:
若那么a土加>6±根;
②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,即:
H,ab
右。>6,且根>0,那么。相>勿”或一>一;
mm
③不等式的两边
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 可再生能源电解水制氢耦合合成氨系统集成与技术经济评价
- 二零二五年度汽车维修保养套餐销售代理居间服务合同
- 应急预案落地实施
- 科技行业的会计工作总结
- 二零二五个人向金融机构借款合同终止条件合同模板4篇
- 二零二五年度钢构桥梁建造与维护服务合同
- 游戏中心前台工作心得
- 工业园区综治工作中心上墙制度
- 二零二五版石料运输车辆运输责任保险合同范本6篇
- 进出口行业客户开发总结
- 河南省安阳市2024年中考一模语文试卷(含答案)
- TD/T 1044-2014 生产项目土地复垦验收规程(正式版)
- 2024年湖南现代物流职业技术学院单招职业适应性测试题库及答案1套
- 垃圾桶创新设计说明书
- 蔚来汽车技术
- 浙教版劳动二年级上册全册教案
- 智能衣服方案
- 李克勤红日标准粤语注音歌词
- 基于视觉的工业缺陷检测技术
- 军事英语词汇整理
- DB31-T 1440-2023 临床研究中心建设与管理规范
评论
0/150
提交评论