云南省永仁县一中2025届高二上数学期末质量跟踪监视模拟试题含解析_第1页
云南省永仁县一中2025届高二上数学期末质量跟踪监视模拟试题含解析_第2页
云南省永仁县一中2025届高二上数学期末质量跟踪监视模拟试题含解析_第3页
云南省永仁县一中2025届高二上数学期末质量跟踪监视模拟试题含解析_第4页
云南省永仁县一中2025届高二上数学期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省永仁县一中2025届高二上数学期末质量跟踪监视模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知直线是圆的对称轴,过点A作圆C的一条切线,切点为B,则|AB|=()A.1 B.2C.4 D.82.已知双曲线C:-=1的焦距为10,点P(2,1)在C的渐近线上,则C的方程为A.-=1 B.-=1C.-=1 D.-=13.设P为椭圆C:上一点,,分别为左、右焦点,且,则()A. B.C. D.4.在等比数列{an}中,a3,a15是方程x2+6x+2=0的根,则的值为()A. B.C. D.或5.如图,在正方体中,点E是上底面的中心,则异面直线与所成角的余弦值为()A. B.C. D.6.已知向量,,且,,,则一定共线的三点是()A.A,B,D B.A,B,CC.B,C,D D.A,C,D7.函数在其定义域内可导,的图象如图所示,则导函数的图象为A. B.C. D.8.在抛物线上,横坐标为4的点到焦点的距离为5,则p的值为()A. B.2C.1 D.49.命题“,均有”的否定为()A.,均有 B.,使得C.,使得 D.,均有10.等比数列的前项和为,若,则()A. B.8C.1或 D.或11.已知双曲线的焦点在y轴上,且实半轴长为4,虚半轴长为5,则双曲线的标准方程为()A.=1 B.=1C.=1 D.=112.已知等比数列中,,,则公比()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.点到直线的距离为________.14.欧阳修在《卖油翁》中写道:(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱孔入,而钱不湿,可见“行行出状元”,卖油翁的技艺让人叹为观止.若铜钱是直径为4cm的圆,中间有边长为1cm的正方形孔,若你随机地向铜钱上滴一滴油,则油(油滴的大小忽略不计)正好落入孔中的概率是_______15.已知椭圆,分别是椭圆的上、下顶点,是左顶点,为左焦点,直线与相交于点,则________16.某位同学参加物理、化学、政治科目的等级考,依据以往成绩估算该同学在物理、化学、政治科目等级中达的概率分别为假设各门科目考试的结果互不影响,则该同学等级考至多有1门学科没有获得的概率为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)一款小游戏的规则如下:每盘游戏都需抛掷骰子三次,出现一次或两次“6点”获得15分,出现三次“6点”获得120分,没有出现“6点”则扣除12分(即获得-12分)(Ⅰ)设每盘游戏中出现“6点”的次数为X,求X的分布列;(Ⅱ)玩两盘游戏,求两盘中至少有一盘获得15分概率;(Ⅲ)玩过这款游戏的许多人发现,若干盘游戏后,与最初的分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析解释上述现象18.(12分)已知椭圆与双曲线有相同的焦点,且的短轴长为(1)求的方程;(2)若直线与交于P,Q两点,,且的面积为,求k19.(12分)如图,在平面直角标系中,已知n个圆与x轴和线均相切,且任意相邻的两个圆外切,其中圆.(1)求数列通项公式;(2)记n个圆的面积之和为S,求证:.20.(12分)已知数列的前项和为,并且满足(1)求数列的通项公式;(2)若,数列的前项和为,求证:21.(12分)已知数列中,,().(1)求证:是等比数列,并求的通项公式;(2)数列满足,求数列的前项和为.22.(10分)已知等比数列{}的各项均为正数,,,成等差数列,,数列{}的前n项和,且.(1)求{}和{}的通项公式;(2)设,记数列{}的前n项和为.求证:.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】首先将圆心坐标代入直线方程求出参数a,求得点A的坐标,由切线与圆的位置关系构造直角三角形从而求得.【详解】圆即,圆心为,半径为r=3,由题意可知过圆的圆心,则,解得,点A坐标为,,切点为B则,故选:C【点睛】本题考查直线与圆的位置关系,属于基础题.2、A【解析】由题意得,双曲线的焦距为,即,又双曲线的渐近线方程为,点在的渐近线上,所以,联立方程组可得,所以双曲线的方程为考点:双曲线的标准方程及简单的几何性质3、B【解析】根据椭圆的定义写出,再根据条件即可解得答案.【详解】根据P为椭圆C:上一点,则有,又,所以,故选:B.4、B【解析】由韦达定理得a3a15=2,由等比数列通项公式性质得:a92=a3a15=a2a16=2,由此求出答案【详解】解:∵在等比数列{an}中,a3,a15是方程x2-6x+2=0的根,∴a3a15=2>0,a3+a15=-6<0∴a2a16=a3a15=2,a92=a3a15=2,∴a9=,∴,故选B【点睛】本题考查等比数列中两项积与另一项的比值的求法,是基础题,解题时要认真审题,注意等比数列的性质的合理运用5、B【解析】建立空间直角坐标系,利用向量夹角求解.【详解】以为原点,为轴正方向建立空间直角坐标系如图所示,设正方体棱长为2,所以,所以异面直线与所成角的余弦值为.故选:B6、A【解析】由已知,分别表示出选项对应的向量,然后利用平面向量共线定理进行判断即可完成求解.【详解】因,,,选项A,,,若A,B,D三点共线,则,即,解得,故该选项正确;选项B,,,若A,B,C三点共线,则,即,解得不存,故该选项错误;选项C,,,若B,C,D三点共线,则,即,解得不存在,故该选项错误;选项D,,,若A,C,D三点共线,则,即,解得不存在,故该选项错误;故选:A.7、D【解析】分析:根据函数单调性、极值与导数的关系即可得到结论.详解:观察函数图象,从左到右单调性先单调递增,然后单调递减,最后单调递增.对应的导数符号为正,负,正.,选项D的图象正确.故选D.点睛:本题主要考查函数图象的识别和判断,函数单调性与导数符号的对应关系是解题关键.8、B【解析】由方程可得抛物线的焦点和准线,进而由抛物线的定义可得,解之可得值【详解】解:由题意可得抛物线开口向右,焦点坐标,,准线方程,由抛物线的定义可得抛物线上横坐标为4的点到准线的距离等于5,即,解之可得.故选:B.9、C【解析】全称命题的否定是特称命题【详解】根据全称命题的否定是特称命题,所以命题“,均有”的否定为“,使得”故选:C10、C【解析】根据等比数列的前项和公式及等比数列通项公式即可求解.【详解】设等比数列的公比为,则因为,所以,即,解得或,所以或.故选:C.11、D【解析】根据双曲线的性质求解即可.【详解】双曲线的焦点在y轴上,且实半轴长为4,虚半轴长为5,可得a=4,b=5,所以双曲线方程为:=1.故选:D.12、C【解析】利用等比中项的性质可求得的值,再由可求得结果.【详解】由等比中项的性质可得,解得,又,,故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】利用点到直线的距离公式即可得出【详解】利用点到直线的距离可得:故答案为:14、【解析】分别求出圆和正方形的面积,结合几何概型的面积型计算公式进行求解即可.【详解】因为铜钱的面积为,正方形孔的面积为,所以随机地向铜钱上滴一滴油,则油(油滴的大小忽略不计)正好落入孔中的概率是.故答案为:【点睛】本题考查了几何概型计算公式,考查了数学运算能力,属于基础题.15、##【解析】先求出顶点和焦点坐标,求出直线直线与的斜率,利用到角公式求出的正切值,进而求出正弦值.【详解】由可得:,所以,,,,故,由到角公式得:,其中,所以.故答案为:16、【解析】考虑3门或者2门两种情况,计算概率得到答案.【详解】.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)分布列见解析(Ⅱ)(Ⅲ)见解析【解析】(Ⅰ)先得到可能的取值为,,,,根据每次抛掷骰子,出现“6点”的概率为,得到每种取值的概率,得到分布列;(Ⅱ)计算出每盘游戏没有获得15分的概率,从而得到两盘中至少有一盘获得15分的概率;(Ⅲ)设每盘游戏得分为,得到的分布列和数学期望,从而得到结论.【详解】解:(Ⅰ)可能的取值为,,,.每次抛掷骰子,出现“6点”的概率为.,,,,所以X的分布列为:0123(Ⅱ)设每盘游戏没有得到15分为事件,则.设“两盘游戏中至少有一次获得15分”为事件,则因此,玩两盘游戏至少有一次获得15分的概率为.(Ⅲ)设每盘游戏得分为.由(Ⅰ)知,的分布列为:Y-1215120P的数学期望为.这表明,获得分数的期望为负因此,多次游戏之后分数减少的可能性更大【点睛】本题考查求随机变量的分布列和数学期望,求互斥事件的概率,属于中档题.18、(1)(2)或k=1.【解析】(1)根据题意求得双曲线的焦点即知椭圆焦点,结合椭圆短轴长,可求得椭圆标准方程;(2)将直线方程和椭圆方程联立,整理得,从而得到根与系数的关系式,然后求出弦长以及到直线PQ的距离,进而表示出,由题意得关于k的方程,解得答案.【小问1详解】双曲线即,故双曲线交点坐标为,由此可知椭圆焦点也为,又的短轴长为,故,所以,故椭圆的方程为;【小问2详解】联立,整理得:,其,设,则,所以=,点到直线PQ的距离为,所以=,又的面积为,则=,解得或k=1.19、(1).(2)证明见解析.【解析】(1)由已知得,设圆分别切轴于点,过点作,垂足为.在从而有得,由等比数列的定义得数列是以为首项,为公比的等比数列.由此求得答案;(2)由(1)得再由圆的面积公式和等比数列求和公式计算可得证.【小问1详解】解:直线的倾斜角为则圆心在直线上,,设圆分别切轴于点,过点作,垂足为.在中,所以即化简得,变形得,所以是以为首项,为公比的等比数列.,.【小问2详解】解:由(1)得所以,所以.20、(1);(2)证明见解析.【解析】(1)利用和项可求得的通项公式,注意别漏了说明;(2)先用错位相减法求出数列的前项和,从而可知【详解】(1),①当时,,②由①—②可得:,且数列是首项为1,公差为2的等差数列,即(2)由(1)知数列,,则,①∴,②由①﹣②得,∴,.【点睛】本题主要考查给出的一个关系式求数列的通项公式以及用错位相减法求数列的前n项和.21、(1)(2)【解析】由已知式子变形可得是以为首项,为公比的等比数列,由等比数列的通项公式易得利用错位相减法,得到数列的前项和为解析:(1)由,()知,又,∴是以为首项,为公比的等比数列,∴,∴(2),,两式相减得,∴点睛:本题主要考查数列的证明,错位相减法等基础知识,考查学生的分析问题解决问题的能力,转化能力和计算能力.第一问中将已知的递推公式进行变形,转化为的形式来证明,还可以根据等比数列

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论