




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
统编版(2025届数学高二上期末质量检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知点、为椭圆的左、右焦点,若点为椭圆上一动点,则使得的点的个数为()A. B.C. D.不能确定2.设直线的倾斜角为,且,则满足A. B.C. D.3.“”是“方程为双曲线方程”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.若曲线的一条切线与直线垂直,则的方程为()A. B.C. D.5.抛物线的焦点到直线的距离()A. B.C.1 D.26.过点且与抛物线只有一个公共点的直线有()A.1条 B.2条C.3条 D.0条7.已知数列是等比数列,,是函数的两个不同零点,则等于()A. B.C.14 D.168.如图,在正方体中,异面直线与所成的角为()A. B.C. D.9.为了调查全国人口的寿命,抽查了11个省(市)的2500名城镇居民,这2500名城镇居民的寿命的全体是()A.总体 B.个体C.样本 D.样本容量10.某地政府为落实疫情防控常态化,不定时从当地780名公务员中,采用系统抽样的方法抽取30人做核酸检测.把这批公务员按001到780进行编号,若054号被抽中,则下列编号也被抽中的是()A.076 B.104C.390 D.52211.若点P在曲线上运动,则点P到直线的距离的最大值为()A. B.2C. D.412.已知椭圆的短轴长和焦距相等,则a的值为()A.1 B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.方程的曲线的一条对称轴是_______,的取值范围是______.14.若方程表示的曲线是圆,则实数的k取值范围是___________.15.圆和圆的公切线的条数为______16.展开式中,各项系数之和为1,则实数_______.(用数字填写答案)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线C的方程是.(1)求C的焦点坐标和准线方程;(2)直线l过抛物线C的焦点且倾斜角为,与抛物线C的交点为A,B,求的长度.18.(12分)内角A,B,C的对边分别为a,b,c,已知(1)求B;(2)若,且是锐角三角形,求c的值19.(12分)如图,在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,∠DAB=60°,PD⊥底面ABCD,点F为棱PD的中点,二面角的余弦值为.(1)求PD的长;(2)求异面直线BF与PA所成角的余弦值;(3)求直线AF与平面BCF所成角的正弦值.20.(12分)一个长方体的平面展开图及该长方体的直观图的示意图如图所示(1)请将字母F,G,H标记在长方体相应的顶点处(不需说明理由):(2)若且有下面两个条件:①;②,请选择其中一个条件,使得DF⊥平面,并证明你的结论21.(12分)如图所示,在四棱锥中,平面,底面是等腰梯形,.且(1)证明:平面平面;(2)若,求平面与平面的夹角的余弦值22.(10分)已知在时有极值0.(1)求常数,的值;(2)求在区间上的最值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】利用余弦定理结合椭圆的定义可求得、,即可得出结论.【详解】在椭圆中,,,,则,,可得,所以,,解得,此时点位于椭圆短轴的顶点.因此,满足条件的点的个数为.故选:B.2、D【解析】因为,所以,,,,故选D3、C【解析】先求出方程表示双曲线时满足的条件,然后根据“小推大”的原则进行判断即可.【详解】因方程为双曲线方程,所以,所以“”是“方程为双曲线方程”的充要条件.故选:C.4、A【解析】两直线垂直,斜率之积为,曲线与直线相切,联立方程令.【详解】法一:直线,所以,所以切线的,设切线的方程为,联立方程,所以,令,解得,所以切线方程为.法二:直线,所以,所以切线的,,所以令,所以,带入曲线方程得切点坐标为,所以切线方程为,化简得.故选:A.5、B【解析】由抛物线可得焦点坐标,结合点到直线的距离公式,即可求解.【详解】由抛物线可得焦点坐标为,根据点到直线的距离公式,可得,即抛物线的焦点到直线的距离为.故选:B.6、B【解析】过的直线的斜率存在和不存在两种情况分别讨论即可得出答案.【详解】易知过点,且斜率不存在的直线为,满足与抛物线只有一个公共点.当直线的斜率存在时,设直线方程为,与联立得,当时,方程有一个解,即直线与扰物线只有一个公共点.故满足题意的直线有2条.故选:B7、C【解析】根据等比数列的性质求得正确答案.【详解】是函数的两个不同零点,所以,由于数列是等比数列,所以.故选:C8、C【解析】作出辅助线,找到异面直线所成的角,利用几何性质进行求解.【详解】连接与,因为,则为所求,又是正三角形,.故选:C.9、C【解析】由样本的概念即知.【详解】由题意可知,这2500名城镇居民的寿命的全体是样本.10、D【解析】根据题意,求得组数与抽中编号的对应关系,即可判断和选择.【详解】从780名公务员中,采用系统抽样的方法抽取30人做核酸检测,故需要分为组,每组人,设第组抽中的编号为,设,由题可知:,故可得,故可得.当时,.故选:.11、A【解析】由方程确定曲线的形状,然后转化为求圆上的点到直线距离的最大值【详解】由曲线方程为知曲线关于轴成轴对称,关于原点成中心对称图形,在第一象限内,方程化为,即,在第一象限内,曲线是为圆心,为半径的圆在第一象限的圆弧(含坐标轴上的点),实际上整个曲线就是这段圆弧及其关于坐标轴.原点对称的图形加上原点,点到直线的距离为,所以所求最大值为故选:A12、A【解析】由题设及椭圆方程可得,即可求参数a的值.【详解】由题设易知:椭圆参数,即有,可得故选:A二、填空题:本题共4小题,每小题5分,共20分。13、①.x轴或直线②.【解析】根据给定条件分析方程的性质即可求得对称轴及x的取值范围作答.【详解】方程中,因,则曲线关于x轴对称,又,解得,此时曲线与都关于直线对称,曲线的对称轴是x轴或直线,的取值范围是.故答案为:x轴或直线;14、【解析】根据二元二次方程表示圆的条件求解【详解】由题意,故答案为:15、3【解析】判断出两个圆的位置关系,由此确定公切线的条数.内含关系0条公切线,内切关系1条公切线,相交关系2条公切线,外切关系3条公切线,外离关系4条公切线。【详解】由题知圆:的圆心,半径,圆:的圆心,半径,所以,,所以两圆外切,所以两圆共有3条公切线.故答案为:316、【解析】通过给二项式中的赋值1求出展开式的各项系数和,即可求出详解】解:令,得各项系数之和为,解得故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)焦点为,准线方程:(2)【解析】(1)抛物线的标准方程为,焦点在轴上,开口向右,,即可求出抛物线的焦点坐标和准线方程;(2)现根据题意给出直线的方程,代入抛物线,求出两交点的横坐标的和,然后利用焦半径公式求解即可【小问1详解】(1)抛物线的标准方程是,焦点在轴上,开口向右,,∴,∴焦点为,准线方程:.【小问2详解】∵直线l过抛物线C的焦点且倾斜角为,,∴直线L的方程为,代入抛物线化简得,设,则,所以故所求的弦长为1218、(1)或(2)【解析】(1)利用正弦定理边化角,然后可解;(2)利用余弦定理求出c,然后检验可得.【小问1详解】,即或【小问2详解】因为是锐角三角形,所以因为所以由余弦定理得:即,解得或若,则,所以,不满足题意;若,因为,且,所以,此时是锐角三角形.所以.19、(1)(2)(3)【解析】(1)以为轴,为轴,轴与垂直,建立如图所示的空间直角坐标系,写出各点坐标,设,,由空间向量法求二面角,从而求得,得长;(2)由空间向量法求异面直线所成的角;(3)由空间向量法求线面角【小问1详解】以为轴,为轴,轴与垂直,由于菱形中,轴是的中垂线,建立如图坐标系,则,,,设,,,,设平面一个法向量为,则,令,则,,即,平面的一个法向量是,因为二面角余弦值为.所以,(负值舍去)所以;【小问2详解】由(1),,,,所以异面直线BF与PA所成角的余弦值为【小问3详解】由(1)平面的一个法向量为,又,,所以直线AF与平面BCF所成角的正弦值为20、(1)答案见解析(2)答案见解析【解析】(1)由展开图及直观图直接观察可得;(2)选择②,根据线面垂直的判定定理即可证明DF⊥平面.【小问1详解】如图,【小问2详解】若选择①,若此时有平面,则由平面可得,而平面,而平面,故,因为,则平面,由平面可得,故此时矩形为正方形,,矛盾.选择条件②,使得平面,下面证明如图,连接,在长方体中,平面,而平面,故,而,故矩形为正方形,故,而,故平面,而平面,故,同理,又,所以平面.21、(1)证明见解析(2)【解析】(1)由线面垂直的判定定理可得平面,再由面面垂直的判定定理可得平面平面;(2)以为坐标原点,以,所在直线分别为,轴,以过点垂直于平面的直线为轴建立空间直角坐标系.求出平面的一个法向量、平面的法向量,由二面角的空间向量求法可得答案.【小问1详解】因为四边形是等腰梯形,,所以,所以,即因为平面,所以,又因为,所以平面,因为平面,所以平面平面【小问2详解】以为坐标原点,以,所在直线分别为,轴,以过点垂直于平面的直线为轴建立如图所示的空间直角坐标系设,则,所以,,,由(1)可知平面的一个法向量为设平面的法向量为,因为,,所以得令,则,,所以,则,所以平面与平面的夹
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 六一活动书房活动方案
- 六一活动共青团活动方案
- 六一活动捉鱼活动方案
- 六一活动节朗诵活动方案
- 六一活动集体活动方案
- 六一游戏活动钓鱼活动方案
- 六一田园活动方案
- 六一美工活动方案
- 六一节活动餐厅活动方案
- 六一赞助班级活动方案
- 2023-2024学年湖北省仙桃市小学数学四年级下册期末评估试卷
- GB/T 3505-2009产品几何技术规范(GPS)表面结构轮廓法术语、定义及表面结构参数
- GB/T 21446-2008用标准孔板流量计测量天然气流量
- 无领导小组面试评分表
- 大学语文-第四讲魏晋风度和魏晋文学-课件
- 我们毕业啦毕业季通用模板课件
- 小升初数学复习八(平面图形)讲义课件
- (完整版)基建建设工程流程图
- 公司金融课件(完整版)
- 墙体开槽技术交底及记录
- 国家开放大学《调剂学(本)》形考任务1-4参考答案
评论
0/150
提交评论