版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
天津市芦台一中2025届数学高一上期末综合测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的图象形如汉字“囧”,故称其为“囧函数”下列命题:①“囧函数”的值域为R;②“囧函数”在上单调递增;③“囧函数”的图象关于轴对称;④“囧函数”有两个零点;⑤“囧函数”的图象与直线至少有一个交点.正确命题的个数为A1 B.2C.3 D.42.设全集,集合,则()A. B.C. D.3.幂函数的图象关于轴对称,且在上是增函数,则的值为()A. B.C. D.和4.设角的终边经过点,那么A. B.C. D.5.函数的图象可能是A. B.C. D.6.已知集合M={x|0≤x<2},N={x|x2-2x-3<0},则M∩N=()A.{x|0≤x<1} B.{x|0≤x<2}C.{x|0≤x≤1} D.{x|0≤x≤2}7.已知函数函数有四个不同的零点,,,,且,则()A.1 B.2C.-1 D.8.如图,,下列等式中成立的是()A. B.C. D.9.过点的直线在两坐标轴上的截距之和为零,则该直线方程为()A. B.C.或 D.或10.已知函数,,的零点分别,,,则,,的大小关系为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数①当a=1时,函数的值域是___________;②若函数的图像与直线y=1只有一个公共点,则实数a的取值范围是___________12.已知,则___________13.在中,,,则面积的最大值为___________.14.已知函数f(x)=若函数g(x)=f(x)-m有3个零点,则实数m的取值范围是_________.15.定义域为上的函数满足,且当时,,若,则a的取值范围是______16.在正三棱柱中,为棱的中点,若是面积为6的直角三角形,则此三棱柱的体积为__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.为了研究某种微生物的生长规律,研究小组在实验室对该种微生物进行培育实验.前一天观测得到该微生物的群落单位数量分别为8,14,26.根据实验数据,用y表示第天的群落单位数量,某研究员提出了两种函数模型:①;②,其中且.(1)根据实验数据,分别求出这两种函数模型的解析式;(2)若第4天和第5天观测得到的群落单位数量分别为50和98,请从两个函数模型中选出更合适的一个,并预计从第几天开始该微生物的群落单位数量超过500.18.在①函数的图象向右平移个单位长度得到的图像,图像关于对称;②函数这两个条件中任选一个,补充在下而问题中,并解答.已知______,函数的图象相邻两条对称轴之间的距离为.(1)若在上的值域为,求a的取值范围;(2)求函数在上的单调递增区间.19.已知为的三个内角,向量与向量共线,且角为锐角.(1)求角的大小;(2)求函数的值域.20.已知函数(1)试判断函数在区间上的单调性,并用函数单调性定义证明;(2)对任意时,都成立,求实数的取值范围21.已知奇函数.(1)求值;(2)若函数的零点是大于的实数,试求的范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】根据“囧函数”的定义结合反比例函数的性质即可判断①,根据复合函数的单调性即可②,根据奇偶性的定义即可判断③,根据零点的定义及反比例函数的性质即可判断④,数形结合即可判断⑤.【详解】解:由题设可知函数的函数值不会取到0,故命题①是错误的;当时,函数是单调递增函数,故“囧函数”在上单调递减,因此命题②是错误的;函数的定义域为,因为,所以函数是偶函数,因此其图象关于轴对称,命题③是真命题;因当时函数恒不为零,即没有零点,故命题④是错误的;作出的大致图象,如图,在四个象限都有图象,故直线与函数的图象至少有一个交点,因此命题⑤也是真命题综上命题③⑤是正确的,其它都是错误的.故选:B2、A【解析】根据补集定义计算【详解】因为集合,又因为全集,所以,.故选:A.【点睛】本题考查补集运算,属于简单题3、D【解析】分别代入的值,由幂函数性质判断函数增减性即可.【详解】因为,,所以当时,,由幂函数性质得,在上是减函数;所以当时,,由幂函数性质得,在上是常函数;所以当时,,由幂函数性质得,图象关于y轴对称,在上是增函数;所以当时,,由幂函数性质得,图象关于y轴对称,在上是增函数;故选:D4、D【解析】由题意首先求得的值,然后利用诱导公式求解的值即可.【详解】由三角函数的定义可知:,则.本题选择D选项.【点睛】本题主要考查由点的坐标确定三角函数值的方法,诱导公式及其应用等知识,意在考查学生的转化能力和计算求解能力.5、C【解析】函数即为对数函数,图象类似的图象,位于轴的右侧,恒过,故选:6、B【解析】先化简集合N,再进行交集运算即得结果.【详解】由于N={x|x2-2x-3<0}={x|-1<x<3},M={x|0≤x<2},所以M∩N={x|0≤x<2}故选:B.7、D【解析】将问题转化为两个函数图象的交点问题,然后结合图象即可解答.【详解】有四个不同的零点,,,,即方程有四个不同的解的图象如图所示,由二次函数的对称性,可得.因为,所以,故故选:D8、B【解析】本题首先可结合向量减法的三角形法则对已知条件中的进行化简,化简为然后化简并代入即可得出答案【详解】因为,所以,所以,即,故选B【点睛】本题考查的知识点是平面向量的基本定理,考查向量减法的三角形法则,考查数形结合思想与化归思想,是简单题9、D【解析】分截距为零和不为零两种情况讨论即可﹒【详解】当直线过原点时,满足题意,方程为,即2x-y=0;当直线不过原点时,设方程为,∵直线过(1,2),∴,∴,∴方程,故选:D﹒10、A【解析】判断出三个函数的单调性,可求出,,并判断,进而可得到答案【详解】因为在上递增,当时,,所以;因为在上递增,当时,恒成立,故的零点小于0,即;因为在上递增,当时,,故,故.故选:A.二、填空题:本大题共6小题,每小题5分,共30分。11、①.(-∞,1]②.(-1,1]【解析】①分段求值域,再求并集可得的值域;②转化为=在上与直线只有一个公共点,分离a求值域可得实数a的取值范围【详解】①当a=1时,即当x≤1时,,当x>1时,,综上所述当a=1时,函数的值域是,②由无解,故=在上与直线只有一个公共点,则有一个零点,即实数的取值范围是.故答案为:;.12、2【解析】将齐次式弦化切即可求解.【详解】解:因为,所以,故答案为:2.13、【解析】利用诱导公式,两角和与差余弦公式、同角间的三角函数关系得,得均为锐角,设边上的高为,由表示出,利用基本不等式求得的最大值,即可得三角形面积最大值【详解】中,,所以,整理得,即,所以均为锐角,作于,如图,记,则,,所以,,当且仅当即时等号成立.所以,的最大值为故答案为:14、(0,1)【解析】将方程的零点问题转化成函数的交点问题,作出函数的图象得到m的范围【详解】令g(x)=f(x)﹣m=0,得m=f(x)作出y=f(x)与y=m的图象,要使函数g(x)=f(x)﹣m有3个零点,则y=f(x)与y=m的图象有3个不同的交点,所以0<m<1,故答案为(0,1)【点睛】本题考查等价转化的能力、利用数形结合思想解题的思想方法是重点,要重视15、【解析】根据,可得函数图象关于直线对称,当时,,可设,根据,即可求解;【详解】解:,的函数图象关于直线对称,函数关于y轴对称,当时,,那么时,,可得,由,得解得:;故答案为.【点睛】本题考查了函数的性质的应用及不等式的求解,属于中档题.16、【解析】由题,设,截面是面积为6的直角三角形,则由得,又则故答案为三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)函数模型①,函数模型②(2)函数模型②更合适,从第8天开始该微生物的群落单位数量超过500【解析】(1)可通过已知条件给到的数据,分别带入函数模型①和函数模型②,列出方程组求解出参数即可完成求解;(2)将第4天和第5天得到的数据与第(1)问计算出的函数模型①和函数模型②的表达式计算出的第4天和第5天的模拟数据对比,即可做出判断并计算.【小问1详解】对于函数模型①:把及相应y值代入得解得,所以.对于函数模型②:把及相应y值代入得解得,所以.【小问2详解】对于模型①,当时,,当时,,故模型①不符合观测数据;对于模型②,当时,,当时,,符合观测数据,所以函数模型②更合适要使,则,即从第8天开始该微生物的群落单位数量超过500.18、(1);(2),,.【解析】先选条件①或条件②,结合函数的性质及图像变换,求得函数,(1)由,得到,根据由正弦函数图像,即可求解;(2)根据函数正弦函数的形式,求得,,进而得出函数的单调递增区间.【详解】方案一:选条件①由函数的图象相邻两条对称轴之间的距离为,可得,解得,所以,又由函数的图象向右平移个单位长度得到,又函数图象关于对称,可得,,因为,所以,所以.(1)由,可得,因为函数在上的值域为,根据由正弦函数图像,可得,解得,所以的取值范围为.(2)由,,可得,,当时,可得;当时,可得;当时,可得,所以函数在上的单调递增区间为,,.方案二:选条件②:由,因为函数的图象相邻两条对称轴之间的距离为,可得,所以,可得,又由函数的图象向右平移个单位长度得到,又函数图象关于对称,可得,,因为,所以,所以.(1)由,可得,因为函数在上的值域为,根据由正弦函数图像,可得,解得,所以的取值范围为.(2)由,,可得,,当时,可得;当时,可得;当时,可得,所以函数在上的单调递增区间为,,.【点睛】解答三角函数图象与性质的综合问题的关键是首先将已知条件化为或的形式,然后再根据三角函数的基本性质,结合数形结合法的思想研究函数的性质(如:单调性、奇偶性、对称性、周期性与最值等),进而加深理解函数的极值点、最值点、零点及有界性等概念与性质.19、(1);(2).【解析】(1)根据平行向量的坐标关系即可得到(2﹣2sinA)(1+sinA)﹣(sinA+cosA)(sinA﹣cosA)=0,这样即可解出tan2A,结合A为锐角,即可求出A;(2)由B+C便得C,从而得到,利用二倍角的余弦公式及两角差的正余弦公式即可化简原函数y=1+sin(B),由前面知0,从而可得到B的范围,结合正弦函数的图象即可得到的范围,即可得出原函数的值域【详解】(1)由m∥n,得(2﹣2sinA)(1+sinA)﹣(sinA+cosA)(sinA﹣cosA)=0,得到2(1-sin2A)-sin2A+cos2A=0,所以2cos2A-sin2A+cos2A=0,即3cos2A-sin2A=0得,所以且为锐角,则.(2)由(1)知,,即,=,所以,=,且,则,所以,则,即函数的值域为.【点睛】本题考查平行向量的坐标的关系,同角基本关系及向量数量积的计算公式,考查了利用正弦函数的图象求最值及二倍角的余弦公式,两角差的正余弦公式等,属于综合题20、(1)在上单调递减,证明见解析;(2).【解析】(1)利用单调性定义:设并证明的大小关系即可.(2)由(1)及函数不等式恒成立
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年度物联网技术研发与定制合同3篇
- 二零二四年度智能穿戴设备采购合同
- 基于二零二四年标准的智能家居系统安装合同
- 绿色能源技术创新
- 《刺五加总苷对水平台所致大鼠睡眠剥夺的睡眠周期的影响》
- 《资本结构对公司绩效的影响作用研究》
- 中学生社会调查报告范文800字
- 北京市新版商品房买卖合同范本
- 服务购买协议书范本
- 二零二四年度企业并购合同并购对象与并购方式
- 净水厂自动化监控系统技术方案
- 群落的结构课件【高效备课精研+知识精讲提升】高二上学期生物人教版选择性必修2
- 2022版小学道德与法治课程标准测试题
- 东南亚印度复习课
- 《一分钟跳绳》【初中体育教学PPT课件】
- 危废培训心得(一)(3篇)
- GB/T 33718-2017企业合同信用指标指南
- 抱抱“暴暴”应对负面情绪 课件 高中心理健康
- 企业现场TPM推进与管理
- GB/T 20981-2021面包质量通则
- GB/T 19412-2003蓄冷空调系统的测试和评价方法
评论
0/150
提交评论