浙江省杭州地区七校联考2025届高二数学第一学期期末复习检测试题含解析_第1页
浙江省杭州地区七校联考2025届高二数学第一学期期末复习检测试题含解析_第2页
浙江省杭州地区七校联考2025届高二数学第一学期期末复习检测试题含解析_第3页
浙江省杭州地区七校联考2025届高二数学第一学期期末复习检测试题含解析_第4页
浙江省杭州地区七校联考2025届高二数学第一学期期末复习检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省杭州地区七校联考2025届高二数学第一学期期末复习检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知实数,满足,则的最小值是()A. B.C. D.2.若函数,(其中,)的最小正周期是,且,则()A. B.C. D.3.已知函数,则()A.函数在上单调递增B.函数上有两个零点C.函数有极大值16D.函数有最小值4.设为等差数列的前项和,,,则A.-6 B.-4C.-2 D.25.是首项和公差均为3的等差数列,如果,则n等于()A.671 B.672C.673 D.6746.已知双曲线:与椭圆:有相同的焦点,且一条渐近线方程为:,则双曲线的方程为()A. B.C. D.7.已知实数满足,则的取值范围()A.-1m B.-1m<0或0<mC.m或m-1 D.m1或m-18.某班级从5名同学中挑出2名同学进行大扫除,若小王和小张在这5名同学之中,则小王和小张都没有被挑出的概率为()A. B.C. D.9.古希腊数学家阿基米德利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积,已知椭圆的面积为,、分别是的两个焦点,过的直线交于、两点,若的周长为,则的离心率为()A. B.C. D.10.如图,空间四边形OABC中,,,,点M在上,且满足,点N为BC的中点,则()A. B.C. D.11.已知空间中三点,,,则下列结论中正确的有()A.平面ABC的一个法向量是 B.的一个单位向量的坐标是C. D.与是共线向量12.已知圆:,圆:,则两圆的位置关系为()A.外离 B.外切C.相交 D.内切二、填空题:本题共4小题,每小题5分,共20分。13.下列是某厂1~4月份用水量(单位:百吨)的一组数据,由其散点图可知,用水量与月份之间有较好的线性相关关系,其线性回归方程是,则_______.月份1234用水量4.5432.514.曲线在点处的切线的方程为__________.15.已知等差数列的公差不为零,若,,成等比数列,则______.16.对某市“四城同创”活动中100名志愿者的年龄抽样调查统计后得到频率分布直方图(如图),但是年龄组为的数据不慎丢失,则依据此图可估计该市“四城同创”活动中志愿者年龄在的人数为________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知直线:,直线:.(1)若,求与的距离;(2)若,求与的交点的坐标.18.(12分)如图,在直三棱柱中,平面侧面,且.(1)求证:;(2)若直线与平面所成的角为,请问在线段上是否存在点,使得二面角的大小为,若存在请求出的位置,不存在请说明理由.19.(12分)已知等差数列的公差为2,且,,成等比数列.(1)求的通项公式;(2)求数列的前项和.20.(12分)已知圆C经过坐标原点O和点(4,0),且圆心在x轴上(1)求圆C的方程;(2)已知直线l:与圆C相交于A、B两点,求所得弦长值21.(12分)已知数列满足,,数列前项和为.(1)求数列,的通项公式;(2)表示不超过的最大整数,如,设的前项和为,令,求证:.22.(10分)已知圆C:的半径为1(1)求实数a的值;(2)判断直线l:与圆C是否相交?若不相交,请说明理由;若相交,请求出弦长

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】将化成,即可求出的最小值【详解】由可化为,所以,解得,因此最小值是故选:A2、B【解析】利用余弦型函数的周期公式可求得的值,由结合的取值范围可求得的值.【详解】由已知可得,且,因此,.故选:B.3、C【解析】对求导,研究的单调性以及极值,再结合选项即可得到答案.【详解】,由,得或,由,得,所以在上递增,在上递减,在上递增,所以极大值为,极小值为,所以有3个零点,且无最小值.故选:C4、A【解析】由已知得解得故选A考点:等差数列的通项公式和前项和公式5、D【解析】根据题意,求得数列的通项公式,代入数据,即可得答案.【详解】因为数列为等差数列,所以,令,解得.故选:D6、B【解析】由渐近线方程,设出双曲线方程,结合与椭圆有相同的焦点,求出双曲线方程.【详解】∵双曲线:的一条渐近线方程为:∴设双曲线:∵双曲线与椭圆有相同的焦点∴,解得:∴双曲线的方程为.故选:B.7、C【解析】把看成动点与所确定的直线的斜率,动点在所给曲线上.【详解】就是点,所确定的直线的斜率,而在上,因为,.故选:C8、B【解析】记另3名同学分别为a,b,c,应用列举法求古典概型的概率即可.【详解】记另3名同学分别为a,b,c,所以基本事件为,,(a,小王),(a,小张),,(b,小王),(b,小张),(c,小王),(c,小张),(小王,小张),共10种小王和小张都没有被挑出包括的基本事件为,,,共3种,综上,小王和小张都没有挑出的概率为故选:B.9、A【解析】本题首先可根据题意得出,然后根据的周长为得出,最后根据求出的值,即可求出的离心率.【详解】因为椭圆的面积为,所以长半轴长与短半轴长的乘积,因为的周长为,所以根据椭圆的定义易知,,,,则的离心率,故选:A.10、B【解析】由空间向量的线性运算求解【详解】由题意,又,,,∴,故选:B11、A【解析】根据已知条件,结合空间中平面法向量的定义,向量模长的求解,以及共线定理,对每个选项进行逐一分析,即可判断和选择.【详解】因为,,,故可得,因为,故,不平行,则D错误;对A:不妨记向量为,则,又,不平行,故向量是平面的法向量,则A正确;对B:因为向量的模长为,其不是单位向量,故B错误;对C:因为,故可得,故C错误;故选:A.12、C【解析】求出两圆的圆心和半径,根据圆心距与半径和与差的关系,判断圆与圆的位置关系【详解】圆:的圆心为,半径,圆:,即,圆心,半径,两圆的圆心距,显然,即,所以圆与圆相交.故选:C二、填空题:本题共4小题,每小题5分,共20分。13、25【解析】根据表格数据求出,代入,即可求出.【详解】解:由题意知:,,将代入线性回归方程,即,解得:.故答案为:5.25.14、【解析】求出导函数,得切线斜率后可得切线方程【详解】,∴切线斜率为,切线方程为故答案为:15、0【解析】设等差数列的公差为,,根据,,成等比数列,得到,再根据等差数列的通项公式可得结果.【详解】设等差数列的公差为,,因为,,成等比数列,所以,所以,整理得,因为,所以,所以.故答案为:0.【点睛】本题考查了等比中项,考查了等差数列通项公式基本量运算,属于基础题.16、【解析】首先根据频率分布直方图计算出年龄在的频率,从而可计算出年龄在的人数.【详解】年龄在的频率为,所以年龄在的人数为.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1).(2).【解析】分析:(1)先根据求出k的值,再利用平行线间的距离公式求与的距离.(2)先根据求出k的值,再解方程组得与的交点的坐标.详解:(1)若,则由,即,解得或.当时,直线:,直线:,两直线重合,不符合,故舍去;当时,直线:,直线:,所以.(2)若,则由,得.所以两直线方程为:,:,联立方程组,解得,所以与的交点的坐标为.点睛:(1)本题主要考查直线的位置关系和距离的计算,意在考查学生对这些知识的掌握水平和计算能力.(2)直线与直线平行,则且两直线不重合.直线与直线垂直,则.18、(1)证明见解析(2)存在,点E为线段中点【解析】(1)通过作辅助线结合面面垂直的性质证明侧面,从而证明结论;(2)建立空间直角坐标系,求出相关点的坐标,再求相关的向量坐标,求平面的法向量,利用向量的夹角公式求得答案.【小问1详解】证明:连接交于点,因,则由平面侧面,且平面侧面,得平面,又平面,所以三棱柱是直三棱柱,则底面ABC,所以.又,从而侧面,又侧面,故.【小问2详解】由(1).平面,则直线与平面所成的角,所以,又,所以假设在线段上是否存在一点E,使得二面角的大小为,由是直三棱柱,所以以点A为原点,以AC、所在直线分别为x,z轴,以过A点和AC垂直的直线为y轴,建立空间直角坐标系,如图所示,则,且设,,得所以,设平面的一个法向量,由,得:,取,由(1)知平面,所以平面的一个法向量,所以,解得,∴点E为线段中点时,二面角的大小为.19、(1)(2)【解析】(1)由,,成等比数列和,可得,解方程求出,从而可求出的通项公式,(2)由(1)可得,然后利用裂项相消法可求出【小问1详解】因为等差数列的公差为2,所以又因为成等比数列,所以,解得,所以.【小问2详解】由(1)得,所以.20、(1)(2)【解析】(1)求出圆心和半径,写出圆的方程;(2)求出圆心到直线距离,进而利用垂径定理求出弦长.【小问1详解】由题意可得,圆心为(2,0),半径为2.则圆的方程为;【小问2详解】由(1)可知:圆C半径为,设圆心(2,0)到l的距离为d,则,由垂径定理得:21、(1),(2)证明见解析【解析】(1)利用累加法求通项公式,利用通项公式与前n项和公式的关系可求的通项公式;(2)求出并判断其范围,求出,利用裂项相消法求的前n项和即可证明.【小问1详解】由题可知,当n≥2时,=当n=1时,也符合上式,∴;当时,,当

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论