版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广西钦州市高新区2025届数学高二上期末检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.抛物线的顶点在原点,对称轴是x轴,点在抛物线上,则抛物线的方程为()A. B.C. D.2.某班级从5名同学中挑出2名同学进行大扫除,若小王和小张在这5名同学之中,则小王和小张都没有被挑出的概率为()A. B.C. D.3.设x∈R,则x<3是0<x<3的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件4.若实数x,y满足不等式组,则的最小值为()A. B.0C. D.25.在中,,则边的长等于()A. B.C. D.26.在空间直角坐标系中,为直线的一个方向向量,为平面的一个法向量,且,则()A. B.C. D.7.已知函数,则满足不等式的的取值范围是()A. B.C. D.8.已知圆,圆相交于P,Q两点,其中,分别为圆和圆的圆心.则四边形的面积为()A.3 B.4C.6 D.9.已知f(x)=x3+(a-1)x2+x+1没有极值,则实数a的取值范围是()A.[0,1] B.(-∞,0]∪[1,+∞)C.[0,2] D.(-∞,0]∪[2,+∞)10.①直线在轴上的截距为;②直线的倾斜角为;③直线必过定点;④两条平行直线与间的距离为.以上四个命题中正确的命题个数为()A. B.C. D.11.已知m,n是两条不同直线,α,β,γ是三个不同平面,下列命题中正确的为A若α⊥γ,β⊥γ,则α∥β B.若m∥α,m∥β,则α∥βC.若m∥α,n∥α,则m∥n D.若m⊥α,n⊥α,则m∥n12.如图,在平行六面体中,,则与向量相等的是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知单位空间向量,,满足,.若空间向量满足,且对于任意实数,的最小值是2,则的最小值是___________.14.古希腊数学家阿基米德利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积.若椭圆的中心为原点,焦点,均在轴上,且,的面积为,则的标准方程为______15.已知矩形的长为2,宽为1,以该矩形的边所在直线为轴旋转一周得到的几何体的表面积为___________.16.执行如图所示的程序框图,则输出的n的值为__.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数在处有极值,且其图象经过点.(1)求的解析式;(2)求在的最值.18.(12分)已知圆内有一点,过点P作直线l交圆C于A,B两点.(1)当P为弦的中点时,求直线l的方程;(2)若直线l与直线平行,求弦的长.19.(12分)已知对于,函数有意义,关于k的不等式成立.(1)若为假命题,求k的取值范围;(2)若p是q的必要不充分条件,求m的取值范围.20.(12分)立德中学举行冬令营活动期间,对位参加活动的学生进行了文化和体能测试,满分为150分,其测试成绩都在90分和150分之间,成绩在认定为“一般”,成绩在认定为“良好”,成绩在认定为“优秀”.成绩统计人数如下表:体能文化一般良好优秀一般0良好3优秀2例如,表中体能成绩良好且文化成绩一般的学生有2人(1)若从这位参加测试的学生中随机抽取一位,抽到文化或体能优秀的学生概率为.求,的值;(2)在(1)的情况下,从体能成绩优秀的学生中,随机抽取2人,求至少有一个人文化的成绩为优秀的概率;(3)若让使参加体能测试的成绩方差最小,写出的值.(直接写出答案)21.(12分)在平面直角坐标系中,动点到直线的距离与到点的距离之差为.(1)求动点的轨迹的方程;(2)过点的直线与交于、两点,若的面积为,求直线的方程.22.(10分)已知函数(1)当时,求函数的单调区间;(2)设,,求证:;(3)当时,恒成立,求的取值范围
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】首先根据题意设出抛物线的方程,利用点在曲线上的条件为点的坐标满足曲线的方程,代入求得参数的值,最后得到答案.【详解】解:根据题意设出抛物线的方程,因为点在抛物线上,所以有,解得,所以抛物线的方程是:,故选:B.2、B【解析】记另3名同学分别为a,b,c,应用列举法求古典概型的概率即可.【详解】记另3名同学分别为a,b,c,所以基本事件为,,(a,小王),(a,小张),,(b,小王),(b,小张),(c,小王),(c,小张),(小王,小张),共10种小王和小张都没有被挑出包括的基本事件为,,,共3种,综上,小王和小张都没有挑出的概率为故选:B.3、B【解析】利用充分条件、必要条件的定义可得出结论.【详解】,因此,“”是“”必要不充分条件.故选:B.4、A【解析】画出可行域,令,则,结合图形求出最小值,即可得解;【详解】解:画出不等式组,表示的平面区域如图阴影部分所示,由,解得,即,令,则.结合图形可知当过点时,取得最小值,且,即故选:A5、A【解析】由余弦定理求解【详解】由余弦定理,得,即,解得(负值舍去)故选:A6、B【解析】由已知条件得出,结合空间向量数量积的坐标运算可求得实数的值.【详解】因为,则,解得.故选:B.7、A【解析】利用导数判断函数的单调性,根据单调性即可解不等式【详解】由则函数在上单调递增又,所以,解得故选:A8、A【解析】求得,由此求得四边形的面积.【详解】圆的圆心为,半径;圆的圆心为,所以,由、两式相减并化简得,即直线的方程为,到直线的距离为,所以,所以四边形的面积为.故选:A9、C【解析】求导得,再解不等式即得解.【详解】由得,根据题意得,解得故选:C10、B【解析】由直线方程的性质依次判断各命题即可得出结果.【详解】对于①,直线,令,则,直线在轴上的截距为-,则①错误;对于②,直线的斜率为,倾斜角为,则②正确;对于③直线,由点斜式方程可知直线必过定点,则③正确;对于④,两条平行直线与间的距离为,则④错误.故选:B.11、D【解析】根据空间线面、面面的平行,垂直关系,结合线面、面面的平行,垂直的判定定理、性质定理解决【详解】∵α⊥γ,β⊥γ,α与β的位置关系是相交或平行,故A不正确;∵m∥α,m∥β,α与β的位置关系是相交或平行,故B不正确;∵m∥α,n∥α,m与n的位置关系是相交、平行或异面∴故C不正确;∵垂直于同一平面的两条直线平行,∴D正确;故答案D【点睛】本题考查线面平行关系判定,要注意直线、平面的不确定情况12、A【解析】根据空间向量的线性运算法则——三角形法,准确运算,即可求解.【详解】由题意,在平行六面体中,,可得.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】以,方向为轴,垂直于,方向为轴建立空间直角坐标系,根据条件求得坐标,由二次函数求最值即可求得最小值.【详解】以,方向为轴,垂直于,方向为轴建立空间直角坐标系,则,由可设,由是单位空间向量可得,由可设,,当,的最小值是2,所以,取,,,当时,最小值为.故答案为:.14、【解析】利用待定系数法列出关于的方程解出即可得结果.【详解】设的标准方程为,则解得所以的标准方程为故答案为:.15、或##或【解析】分两种情况进行解答,①以边长为2的边为轴旋转,②以边长为1的边为轴旋转.进行解答即可【详解】解:①以边长为2的边为轴旋转,表面积两个底面积侧面积,即:,②以边长为1的边为轴旋转,表面积两个底面积侧面积,即:,故答案为:或16、5【解析】明确程序运行的顺序,写出每次循环的m,n的值,直到判断符合条件时结束,即可得到结果.【详解】第一次循环,m=3,n=2;第二次循环,m=6,n=3;第三次循环,m=9,n=4;第四次循环,m=12,n=5,此时m+n>15,跳出循环,故答案为:5.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2),【解析】(1)由与解方程组即可得解;(2)求导后得到函数的单调区间与极值后,比较端点值即可得解.【详解】(1)求导得,处有极值,即,又图象过点,代入可得..(2)由(1)知,令得又,.列表如下:0230+4↘极小值↗1在时,,.【点睛】本题考查了导数的简单应用,属于基础题.18、(1)(2)【解析】(1)由题意,,求出直线l的斜率,利用点斜式即可求解;(2)由题意,利用点斜式求出直线l的方程,然后由点到直线的距离公式求出弦心距,最后根据弦长公式即可求解.小问1详解】解:由题意,圆心,P为弦的中点时,由圆的性质有,又,所以,所以直线l的方程为,即;【小问2详解】解:因为直线l与直线平行,所以,所以直线的方程为,即,因为圆心到直线的距离,又半径,所以由弦长公式得.19、(1)(2)【解析】(1)由与的真假相反,得出为真命题,将定义域问题转化为不等式的恒成立问题,讨论参数的取值,得出答案;(2)由必要不充分条件的定义得出,讨论的取值结合包含关系得出的范围.【详解】解:(1)因为为假命题,所以为真命题,所以对恒成立.当时,不符合题意;当时,则有,则.综上,k的取值范围为.(2)由,得.由(1)知,当为真命题时,则令令因为p是q的必要不充分条件,所以当时,,,解得当时,,符合题意;当时,,符合题意;所以的取值范围是【点睛】本题主要考查了不等式的恒成立问题以及根据必要不充分条件求参数范围,属于中档题.20、(1),;(2);(3).【解析】(1)由题设可得求参数a,结合表格数据及已知总学生人数求参数b.(2)应用列举法求古典概型的概率.(3)应用表格数据及方差公式可得且,即可确定成绩方差最小对应的值.【小问1详解】设事件:从位学生中随机抽取一位,抽到文化或体能优秀的学生由题意知,体能或文化优秀的学生共有人,则,解得所以;【小问2详解】体能成绩为优秀的学生共有5人,在这5人中,文化成绩一般的人记为;文化成绩良好的人记为;文化成绩优秀的人记为从文化成绩优秀的学生中,随机抽取2人的样本空间,设事件:至少有一个人文化的成绩为优秀,,所以,体能成绩优秀的学生中,随机抽取2人,至少有一个人文化成绩为优秀的概率是;【小问3详解】由题设知:体能测试成绩,{一般,良好,优秀}人数分别为{5,,},对应平均分为{100,120,140},所以体能测试平均成绩,所以,而所以当时最小.21、(1);(2)或.【解析】(1)本题首先可以设动点,然后根据题意得出,通过化简即可得出结果;(2)本题首先可排除直线斜率不存在时情况,然后设直线方程为,通过联立方程并化简得出,则,,再然后根据得出,最后根据的面积为即可得出结果.【详解】(1)设动点,因为动点到直线的距离与到点的距离之差为,所以,化简可得,故轨迹方程为.(2)当直线斜率不存在时,其方程为,此时,与只有一个交点,不符合题意,当直线斜率存在时,设其方程为,联立方程,化简得,,令、,则,,因为,所以,因为的面积为,所以,解得或,故直线方程为:或.【点睛】本题考查动点的轨迹方程的求法以及抛物线与直线相交的相关问题的求解,能否根据题意列出等式是求动点的轨迹方程的关键,考查韦达定理的应用,在计算时要注意斜率为这种情况,考查计算能力,考查转化与化归思想,是中档题.22、(1)函数单调递增区间为(0,1),单调递减区间为(1,+∞)(2)证明见解析(3)[1,+∞)【解析】(1)对函数求导后,由导数的正负可求出函数的单调区间,(2)由(1)可得,令,则可得,然后利用累加法可证得结论,(3)由,故,然后分和讨论的最大值与比较可得结果【小问1详解】当时,(),则,由,解得;由,解得,因
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度摄影师与摄影棚运营方居间合同2篇
- 二零二五版社区配送订餐服务合同范本与社区管理协议3篇
- 二零二五年度酒店地毯绿色生产与环保认证合同3篇
- 二零二五年新能源充电桩建设运营合同样本3篇
- 二零二五版高端住宅项目全程代理销售合同3篇
- 二零二五版基因合成与生物技术知识产权转让合同3篇
- 二零二五版10月大型设备运输委托合同2篇
- 二零二五版广西事业单位聘用示范性合同模板12篇
- 2025年度出口货物环保认证服务合同3篇
- 二零二五年度腻子材料国际贸易代理合同2篇
- 纳米技术增强早期疾病生物标志物的检测
- 产品销量分析表折线图excel模板
- 办公设备(电脑、一体机、投影机等)采购 投标方案(技术方案)
- 【真题】2023年南京市中考语文试卷(含答案解析)
- 功率模块可靠性寿命评估与预测
- 案卷评查培训课件模板
- 湘教版七年级地理第一学期期末试卷分析
- 上海春季高考英语真题试题word精校版(含答案)
- “数”我精彩-“学”有特色-小学六年级数学寒假特色作业展示
- 牛津译林版八年级上册英语8A期末复习-阅读理解(含答案)
- 普通高等新郎接亲试卷(2022全国卷)
评论
0/150
提交评论