版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省南安市南安一中2025届数学高一上期末达标检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.三个数的大小关系是()A. B.C. D.2.2020年12月17日凌晨,嫦娥五号返回器携带月球样品在内蒙古四子王旗预定区域安全着陆-嫦娥五号返回:舱之所以能达到如此髙的再入精度,主要是因为它采用弹跳式返回弹道,实现了减速和再入阶段弹道调整,这与“打水漂”原理类似(如图所示).现将石片扔向水面,假设石片第一次接触水面的速率为100m/s,这是第一次“打水漂”,然后石片在水面上多次“打水漂”,每次“打水漂”的速率为上一次的90%,若要使石片的速率低于60m/s,则至少还需要“打水漂”的次数为()(参考数据:取lg2≈0.301,lg3≈0.477)A.4 B.5C.6 D.73.已知扇形的圆心角为,半径为10,则扇形的弧长为()A. B.1C.2 D.44.已知,且,则()A. B.C. D.5.已知函数的图象是一条连续不断的曲线,且有如下对应函数值表:1245612313615.55210.88-52.488-232.064在以下区间中,一定有零点的是()A.(1,2) B.(2,4)C.(4,5) D.(5,6)6.若,则是()A.第一象限或第三象限角 B.第二象限或第四象限角C.第三象限或第四象限角 D.第二象限或第三象限角7.已知命题p:x为自然数,命题q:x为整数,则p是q的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件8.已知不等式的解集为,则不等式的解集是()A. B.C.或 D.或9.已知点,,则直线的倾斜角为()A. B.C. D.10.若两个非零向量,满足,则与的夹角为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数若,则实数的值等于________12.已知函数,若对任意的、,,都有成立,则实数的取值范围是______.13.计算:_______14.用半径为的半圆形纸片卷成一个圆锥,则这个圆锥的高为__________15.若三棱锥中,,其余各棱长均为5,则三棱锥内切球的表面积为_____16.已知函数,,若不等式恰有两个整数解,则实数的取值范围是________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知点,圆.(1)求过点且与圆相切的直线方程;(2)若直线与圆相交于,两点,且弦的长为,求实数的值.18.已知函数.(1)判断的奇偶性并证明;(2)用函数单调性的定义证明在区间上单调递增;(3)若对,不等式恒成立,求实数的取值范围.19.如图,直角梯形ABCD中,AB⊥AD,AD∥BC,AD=6,BC=2AB=4,点E为线段BC的中点,点F在线段AD上,且EF∥AB,现将四边形ABCD沿EF折起,使平面ABEF⊥平面EFDC,点P为几何体中线段AD的中点(Ⅰ)证明:平面ACD⊥平面ACF;(Ⅱ)证明:CD∥平面BPE20.已知函数定义域为,若对于任意的,都有,且时,有.(1)判断并证明函数的奇偶性;(2)判断并证明函数的单调性;(3)若对所有,恒成立,求的取值范围.21.已知,(1)求,的值;(2)求的值
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】利用指数函数、对数函数、正弦函数的单调性结合中间量法即可求解【详解】解:,,,故选:A2、C【解析】设石片第n次“打水漂”时的速率为vn,再根据题设列不等式求解即可.【详解】设石片第n次“打水漂”时的速率为vn,则vn=.由,得,则,所以,故,又,所以至少需要“打水漂”的次数为6.故选:C3、D【解析】由扇形的弧长公式运算可得解.【详解】解:因为扇形的圆心角为,半径为10,所以由弧长公式得:扇形的弧长为故选:D4、B【解析】利用角的关系,再结合诱导公式和同角三角函数基本关系式,即可求解.【详解】,,.故选:B5、C【解析】由表格数据,结合零点存在定理判断零点所在区间.【详解】∵∴,,,,又函数的图象是一条连续不断的曲线,由函数零点存在定理可得在区间上一定有零点故选:C.6、D【解析】由已知可得即可判断.【详解】,即,则且,是第二象限或第三象限角.故选:D.7、A【解析】根据两个命题中的取值范围,分析是否能得到pq和qp【详解】若x为自然数,则它必为整数,即p⇒q但x为整数不一定是自然数,如x=-2,即qp故p是q的充分不必要条件故选:A.8、A【解析】由不等式的解集为,可得的根为,由韦达定理可得的值,代入不等式解出其解集即可.【详解】的解集为,则的根为,即,,解得,则不等式可化为,即为,解得或,故选:A.9、B【解析】由两点求斜率公式可得AB所在直线当斜率,再由斜率等于倾斜角的正切值求解【详解】解:∵直线过点,,∴,设AB的倾斜角为α(0°≤α<180°),则tanα=1,即α=45°故选B【点睛】本题考查直线的倾斜角,考查直线倾斜角与斜率的关系,是基础题10、C【解析】根据数量积的运算律得到,即可得解;【详解】解:因为,所以,即,即,所以,即与的夹角为;故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、-3【解析】先求,再根据自变量范围分类讨论,根据对应解析式列方程解得结果.【详解】当a>0时,2a=-2解得a=-1,不成立当a≤0时,a+1=-2,解得a=-3【点睛】求某条件下自变量的值,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.12、【解析】分析出函数为上的减函数,结合已知条件可得出关于实数的不等式组,由此可解得实数的取值范围.【详解】设,则,由可得,即,所以,函数为上的减函数.由于,由题意可知,函数在上为减函数,则,函数在上为减函数,则,且有,所以,解得.因此,实数的取值范围是.故答案:.【点睛】关键点点睛:在利用分段函数的单调性求参数时,除了分析每支函数的单调性外,还应由间断点处函数值的大小关系得出关于参数的不等式组求解.13、【解析】求出的值,求解计算即可.【详解】故答案为:14、【解析】根据圆锥的底面周长等于半圆形纸片的弧长建立等式,再根据半圆形纸片的半径为圆锥的母线长求解即可.【详解】由题得,半圆形纸片弧长为,设圆锥的底面半径为,则,故圆锥的高为.故答案为:【点睛】本题主要考查了圆锥展开图中的运算,重点是根据圆锥底面的周长等于展开后扇形的弧长,属于基础题.15、【解析】由题意得,易知内切球球心到各面的距离相等,设为的中点,则在上且为的中点,在中,,所以三棱锥内切球的表面积为16、.【解析】因为,所以即的取值范围是.点睛:对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)或;(2).【解析】(1)考虑切线的斜率是否存在,结合直线与圆相切的的条件d=r,直接求解圆的切线方程即可(2)利用圆的圆心距、半径及半弦长的关系,列出方程,求解a即可【详解】(1)由圆的方程得到圆心,半径.当直线斜率不存在时,直线与圆显然相切;当直线斜率存在时,设所求直线方程为,即,由题意得:,解得,∴方程为,即.故过点且与圆相切的直线方程为或.(2)∵弦长为,半径为2.圆心到直线的距离,∴,解得.【点睛】本题考查直线与圆的位置关系的综合应用,考查切线方程的求法,考查了垂径定理的应用,考查计算能力18、(1)为奇函数,证明见解析(2)证明见解析(3)【解析】(1)求出函数的定义域,然后验证、之间的关系,即可证得函数为奇函数;(2)任取、,且,作差,因式分解后判断差值的符号,即可证得结论成立;(3)由参变量分离法可得出,令,求出函数在上的最大值,即可得出实数的取值范围.【小问1详解】证明:函数为奇函数,理由如下:函数的定义域为,,所以为奇函数.【小问2详解】证明:任取、,且,则,,,所以,,所以在区间上单调递增.【小问3详解】解:不等式在上恒成立等价于在上恒成立,令,因为,所以,则有在恒成立,令,,则,所以,所以实数的取值范围为.19、证明过程详见解析【解析】(Ⅰ)证明AF⊥平面EFDC,得出AF⊥CD;再由勾股定理证明FC⊥CD,即可证明CD⊥平面ACF,平面ACD⊥平面ACF;(Ⅱ)取DF的中点Q,连接QE、QP,证明BPQE四点共面,再证明CD∥EQ,从而证明CD∥平面EBPQ,即为CD∥平面BPE【详解】(Ⅰ)由题意知,四边形ABEF是正方形,∴AF⊥EF,又平面ABEF⊥平面EFDC,∴AF⊥平面EFDC,∴AF⊥CD;又FD=4,FC=AB=2,CD=AB=2,∴FD2=FC2+CD2,∴FC⊥CD;又FC∩AF=F,∴CD⊥平面ACF;又CD⊂平面ACD,∴平面ACD⊥平面ACF;(Ⅱ)如图所示,取DF的中点Q,连接QE、QP,则QP∥AF,又AF∥BE,∴PQ∥BF,∴BPQE四点共面;又EC=2,QD=DF=2,且DF∥EC,∴QD与EC平行且相等,∴QECD为平行四边形,∴CD∥EQ,又EQ⊂平面EBPQ,CD⊄平面EBPQ,∴CD∥平面EBPQ,即CD∥平面BPE【点睛】本题主要考查直线和平面平行与垂直的判定应用问题,也考查了平面与平面的垂直应用问题,是中档题20、(1)为奇函数;证明见解析;(2)是在上为单调递增函数;证明见解析;(3)或.【解析】(1)根据已知等式,运用特殊值法和函数奇偶性的定义进行判断即可;(2)根据函数的单调性的定义,结合已知进行判断即可;(3)根据(1)(2),结合函数的单调性求出函数在的最大值,最后根据构造新函数,利用新函数的单调性进行求解即可.详解】(1)∵,令,得,∴,令可得:,∴,∴为奇函数;(2)∵是定义在上的奇函数,由题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024版二手挖掘机设备买卖合同
- 二零二四年度在建工程销售合同3篇
- 2024围棋培训教练聘用合同模板
- 二零二四年度生态环境治理与保护服务合同2篇
- 2024年度旅游服务合同的旅游路线与服务标准3篇
- 2024员工劳动合同协议书范文
- 2024室内装修具体服务协议版B版
- 2024专业灭火器采购协议版B版
- 2024年度框架合同:跨国公司全球广告代理框架3篇
- 全新企业2024年度市场推广合同
- 中国历史朝代顺序表、年表(完整版)
- 热管空气预热器计算
- 流体输送技术
- 软件测试_测试用例实例(含:功能测试用例、性能测试用例、兼容性测试用例)
- 《园林植物景观设计》期末试卷试题A卷
- ADPSS电磁暂态仿真培训PPT课件
- 汽车品牌介绍PPT课件
- 血常规指标与临床意义
- 初中英语以读促写教学研究
- 凹版印刷机使用说明书
- 粗糙度全参数解说
评论
0/150
提交评论