版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届湖北随州市普通高中高二数学第一学期期末调研试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知平面,的法向量分别为,,且,则()A. B.C. D.2.已知双曲线的右焦点为F,双曲线C的右支上有一点P满是(点O为坐标原点),那么双曲线C的离心率为()A. B.C. D.3.数列中,,,.当时,则n等于()A.2016 B.2017C.2018 D.20194.复数的共轭复数的虚部为()A. B.C. D.5.小王与小张二人参加某射击比赛预赛的五次测试成绩如下表所示,设小王与小张成绩的样本平均数分别为和,方差分别为和,则()第一次第二次第三次第四次第五次小王得分(环)910579小张得分(环)67557A. B.C. D.6.《镜花缘》是清代文人李汝珍创作的长篇小说,书中有这样一个情节:一座楼阁到处挂满了五彩缤纷的大小灯球,灯球有两种,一种是大灯下缀2个小灯,另一种是大灯下缀4个小灯,大灯共360个,小灯共1200个.若在这座楼阁的灯球中,随机选取一个灯球,则这个灯球是大灯下缀4个小灯的概率为A. B.C. D.7.已知圆,直线,直线l被圆O截得的弦长最短为()A. B.C.8 D.98.如图,在三棱锥中,两两垂直,且,点E为中点,若直线与所成的角为,则三棱锥的体积等于()A. B.C.2 D.9.已知随机变量X的分布列如表所示,则()X123Pa2a3aA. B.C. D.10.已知四棱锥,底面为平行四边形,分别为,上的点,,设,则向量用为基底表示为()A. B.C. D.11.直线:和圆的位置关系是()A.相离 B.相切或相交C.相交 D.相切12.已知双曲线上的点到的距离为15,则点到点的距离为()A.7 B.23C.5或25 D.7或23二、填空题:本题共4小题,每小题5分,共20分。13.我国民间剪纸艺术在剪纸时经常会沿纸的某条对称轴把纸对折.现有一张半径为的圆形纸,对折次可以得到两个规格相同的图形,将其中之一进行第次对折后,就会得到三个图形,其中有两个规格相同,取规格相同的两个之一进行第次对折后,就会得到四个图形,其中依然有两个规格相同,以此类推,每次对折后都会有两个图形规格相同.如果把次对折后得到的不同规格的图形面积和用表示,由题意知,,则________;如果对折次,则________.14.曲线在点处的切线方程为_____________.15.已知矩形的长为2,宽为1,以该矩形的边所在直线为轴旋转一周得到的几何体的表面积为___________.16.已知椭圆C:,点M与C的焦点不重合,若M关于C的焦点的对称点分别为A,B,线段MN的中点在C上,则_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知:,有,:方程表示经过第二、三象限的抛物线,.(1)若是真命题,求实数的取值范围;(2)若“”是假命题,“”是真命题,求实数的取值范围.18.(12分)已知椭圆的左、右焦点分别为,,离心率为,过的直线与椭圆交于,两点,若的周长为8.(1)求椭圆的标准方程;(2)设为椭圆上的动点,过原点作直线与椭圆分别交于点、(点不在直线上),求面积的最大值.19.(12分)已知数列和满足,(1)若,求的通项公式;(2)若,,证明为等差数列,并求和的通项公式20.(12分)已知数列是等差数列,其前项和为,且,.(1)求;(2)记数列的前项和为,求当取得最小值时的的值.21.(12分)已知椭圆的离心率为,右焦点为,斜率为1的直线与椭圆交于两点,以为底边作等腰三角形,顶点为.(1)求椭圆的方程;(2)求的面积.22.(10分)锐角中满足,其中分别为内角的对边(I)求角;(II)若,求的取值范围
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由题得,解方程即得解.【详解】解:因为,所以所以,所以,所以.故选:D2、D【解析】分析焦点三角形即可【详解】如图,设左焦点为,因为,所以不妨设,则离心率故选:D3、B【解析】根据已知条件用逐差法求得的通项公式,再根据裂项求和法求得,代值计算即可.【详解】因为,,则,即,则,故,又,即,解得.故选:B.4、B【解析】先根据复数除法与加法运算求解得,再求共轭复数及其虚部.【详解】解:,所以其共轭复数为,其虚部为故选:B5、C【解析】根据图表数据可以看出小王和小张的平均成绩和成绩波动情况.【详解】解:从图表中可以看出小王每次的成绩均不低于小张,但是小王成绩波动比较大,故设小王与小张成绩的样本平均数分别为和,方差分别为和.可知故选:C6、B【解析】设大灯下缀2个小灯为个,大灯下缀4个小灯有个,根据题意求得,再由古典概型及其概率的公式,即可求解【详解】设大灯下缀2个小灯为个,大灯下缀4个小灯有个,根据题意可得,解得,则灯球的总数为个,故这个灯球是大灯下缀4个小灯的概率为,故选B【点睛】本题主要考查了古典概型及其概率的计算,其中解答中根据题意列出方程组,求得两种灯球的数量是解答的关键,着重考查了运算与求解能力,属于基础题7、B【解析】先求得直线过定点,再根据当点与圆心连线垂直于直线l时,被圆O截得的弦长最短求解.【详解】因为直线方程,即为,所以直线过定点,因为点在圆的内部,当点与圆心连线垂直于直线l时,被圆O截得的弦长最短,点与圆心(0,0)的距离为,此时,最短弦长为,故选:B8、D【解析】由题意可证平面,取BD的中点F,连接EF,则为直线与所成的角,利用余弦定理求出,根据三棱锥体积公式即可求得体积【详解】如图,∵,点为的中点,∴,,∵,,两两垂直,,∴平面,取BD的中点F,连接EF,∴为直线与所成的角,且,由题意可知,,设,连接AF,则,在中,由余弦定理,得,即,解得,即∴三棱锥的体积故选:9、C【解析】根据分布列性质计算可得;【详解】解:依题意,解得,所以;故选:C10、D【解析】通过寻找封闭的三角形,将相关向量一步步用基底表示即可.【详解】.故选:D11、C【解析】直线l:y﹣1=k(x﹣1)恒过点(1,1),且点(1,1)在圆上,直线的斜率存在,故可知直线l:y﹣1=k(x﹣1)和圆C:x2+y2﹣2y=0的关系【详解】圆C:x2+y2﹣2y=0可化为x2+(y﹣1)2=1∴圆心为(0,1),半径为1∵直线l:y﹣1=k(x﹣1)恒过点(1,1),且点(1,1)在圆上且直线的斜率存在∴直线l:y﹣1=k(x﹣1)和圆C:x2+y2﹣2y=0的关系是相交,故选C【点睛】本题考查的重点是直线与圆的位置关系,解题的关键是确定直线恒过定点,此题易误选B,忽视直线的斜率存在12、D【解析】根据双曲线的定义知,,即可求解.【详解】由题意,双曲线,可得焦点坐标,根据双曲线的定义知,,而,所以或故选:D【点睛】本题主要考查了双曲线的定义及其应用,其中解答中熟记双曲线的定义,列出方程是解答的关键,着重考查推理与运算能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、①.②.【解析】首先根据题意得到,再计算即可;根据题意得到,再利用分组求和法求和即可.【详解】因为,,所以,所以..故答案为:;14、【解析】求导,求出切线斜率,进而写出切线方程.【详解】,则,故切斜方程为:,即故答案为:15、或##或【解析】分两种情况进行解答,①以边长为2的边为轴旋转,②以边长为1的边为轴旋转.进行解答即可【详解】解:①以边长为2的边为轴旋转,表面积两个底面积侧面积,即:,②以边长为1的边为轴旋转,表面积两个底面积侧面积,即:,故答案为:或16、【解析】设M,N的中点坐标为P,,则;由于,化简可得,根据椭圆的定义==6,所以12.考点:1.椭圆的定义;2.两点距离公式.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)将问题转化为不等式对应的方程无解,进而根据根的判别式小于0,计算即可;(2)根据且、或命题的真假判断命题p、q的真假,列出对应的不等式组,解之即可.【小问1详解】由条件知,恒成立,只需的.解得.【小问2详解】若为真命题,则,解得.若“”是假命题,“”是真命题,所以和一真一假若真假,则,解得.若假真,则,解得.综上,实数的取值范围是.18、(1);(2).【解析】(1)根据周长可求,再根据离心率可求,求出后可求椭圆的方程.(2)当直线轴时,计算可得的面积的最大值为,直线不垂直轴时,可设,联立直线方程和椭圆方程可求,设与平行且与椭圆相切的直线为:,结合椭圆方程可求的关系,从而求出该直线到直线的距离,从而可求的面积的最大值为.【详解】(1)由椭圆的定义可知,的周长为,∴,,又离心率为,∴,,所以椭圆方程为.(2)当直线轴时,;当直线不垂直轴时,设,,,∴.设与平行且与椭圆相切的直线为:,,∵,∴,∴距的最大距离为,∴,综上,面积的最大值为.【点睛】方法点睛:求椭圆的标准方程,关键是基本量的确定,而面积的最值的计算,则可以转化为与已知直线平行且与椭圆相切的直线与已知直线的距离来计算,此类转化为面积最值计算过程的常规转化.19、(1)(2)证明见解析,,【解析】(1)代入可得,变形得构造等比数列求的通项公式;(2)先由已知得,先分别求出,的通项公式,然后合并可得的通项公式,进而可得的通项公式【小问1详解】当,时,,所以,即,整理得,所以是以为首项,为公比的等比数列故,即【小问2详解】当时,由,,得,所以因为,所以,则是以为首项,2为公差的等差数列,,;是以为首项,2为公差的等差数列,,综上所述,所以,,故是以2为首项,1为公差的等差数列当时,,且满足,所以20、(1)(2)10或11【解析】(1)利用通项公式以及求和公式列出方程组得出;(2)先求出数列通项公式,再根据得出取得最小值时的的值.【小问1详解】设等差数列的公差为,则由得解得所以.【小问2详解】因为,所以,则.令,解得,由于,故或,故当前项和取得最小值时的值为10或11.21、(1)(2)【解析】(1)根据椭圆的简单几何性质知,又,写出椭圆的方程;(2)先斜截式设出直线,联立方程组,根据直线与圆锥曲线的位置关系,可得出中点为的坐标,再根据△为等腰三角形知,从而得的斜率为,求出,写出:,并计算,再根据点到直线距离公式求高,即可计算出面积【详解】(1)由已知得,,解得,又,所以椭圆的方程为(2)设直线的方程为,由得,①设、的坐标分别为,(),中点为,则,,因为是等腰△的底边,所以所以的斜率为,解得,此时方程①为解得,,所以,,所以,此时,点到直线:距离,所以△的面积考点:1、椭圆的简单几何性质;2、直线和椭圆的位置关系;3、椭圆的标准方程;4、点到直线的距离.【思路点晴】本题主要考查的是椭圆的方程,椭圆的简单几何性质,直线与椭圆的位置关系,点到直线的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 暨南大学《环境专业英语》2021-2022学年第一学期期末试卷
- 城市轨道交通自动售检票系统实务 第2版 课件 单元一单元二及单元三课题一
- 科学计算语言Julia及MWORKS实践 课件 11-数学运算与初等函数
- 文旅新媒体运营 课件 第7章 文旅新媒体的数据运营
- 2024年度技术咨询合同:企业信息化建设咨询与实施2篇
- 肛瘘手术过程
- 2024年项目个人总结1000字范文
- 酒店培训结业汇报
- 语言教育活动教案中班
- 山东省数据中心建设项目2024年度施工合同2篇
- 2024年新《民法典》知识考试题库(含答案)
- 建设新型能源体系提高能源资源安全保障能力
- 2024年世界职业院校技能大赛高职组“市政管线(道)数字化施工组”赛项考试题库
- 江苏省无锡市锡山区天一中学2025届高一物理第一学期期末质量检测试题含解析
- 《IC品质控制》课件
- 2024年事业单位招聘考试计算机基础知识复习题库及答案(共700题)
- 阿尔茨海默病的诊断
- 2024-2030年中国眼镜行业市场深度分析及竞争格局与投资研究报告
- 2024-2030年中国度假酒店行业未来发展趋势及投资经营策略分析报告
- 德勤-集团信息化顶层规划方案
- 2024年法律职业资格考试(试卷一)客观题试卷及解答参考
评论
0/150
提交评论