福建省闽侯县第六中学2025届高二上数学期末达标检测模拟试题含解析_第1页
福建省闽侯县第六中学2025届高二上数学期末达标检测模拟试题含解析_第2页
福建省闽侯县第六中学2025届高二上数学期末达标检测模拟试题含解析_第3页
福建省闽侯县第六中学2025届高二上数学期末达标检测模拟试题含解析_第4页
福建省闽侯县第六中学2025届高二上数学期末达标检测模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省闽侯县第六中学2025届高二上数学期末达标检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.以下四个命题中,正确的是()A.若,则三点共线B.C.为直角三角形的充要条件是D.若为空间的一个基底,则构成空间的另一个基底2.已知函数,那么“”是“在上为增函数”的A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件3.已知双曲线,过点作直线l与双曲线交于A,B两点,则能使点P为线段AB中点的直线l的条数为()A.0 B.1C.2 D.34.执行如图所示的程序框图,则输出S的值是()A. B.C. D.5.某几何体的三视图如图所示,则该几何体的体积为A.54 B.45C.27 D.816.杨辉三角是二项式系数在三角形中的一种几何排列,在中国南宋数学家杨辉1261年所著的《详解九章算法》一书中就有出现.在欧洲,帕斯卡(1623~1662)在1654年发现这一规律,比杨辉要迟了393年.如图所示,在“杨辉三角”中,从1开始箭头所指的数组成一个锯齿形数列:1,2,3,3,6,4,10,5,…,则在该数列中,第37项是A.153 B.171C.190 D.2107.已知函数是定义在上奇函数,,当时,有成立,则不等式的解集是()A. B.C. D.8.当实数,m变化时,的最大值是()A.3 B.4C.5 D.69.已知实数成等比数列,则圆锥曲线的离心率为()A. B.2C.或2 D.或10.已知双曲线的一条渐近线方程为,它的焦距为2,则双曲线的方程为()A B.C. D.11.若,(),则,的大小关系是A. B.C. D.,的大小由的取值确定12.命题“,都有”的否定为()A.,使得 B.,使得C.,使得 D.,使得二、填空题:本题共4小题,每小题5分,共20分。13.已知某农场某植物高度,且,如果这个农场有这种植物10000棵,试估计该农场这种植物高度在区间上的棵数为______.参考数据:若,则,,.14.已知圆:,:.则这两圆的连心线方程为_________(答案写成一般式方程)15.不大于100的正整数中,被3除余1的所有数的和是___________16.数列满足,,其前n项积为,则______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线的焦点为,点在抛物线上,当以为始边,为终边的角时,.(1)求的方程(2)过点的直线交于两点,以为直径的圆平行于轴的直线相切于点,线段交于点,求的面积与的面积的比值18.(12分)已知数列是公差不为0的等差数列,首项,且成等比数列(1)求数列的通项公式;(2)设数列满足,求数列的前n项和19.(12分)如图,在三棱柱中,面ABC,,,D为BC的中点(1)求证:平面;(2)若F为中点,求与平面所成角的正弦值20.(12分)如图1,在边长为2的菱形ABCD中,∠BAD=60°,将△BCD沿对角线BD折起到△BDC′的位置,如图2所示,并使得平面BDC′⊥平面ABD,E是BD的中点,FA⊥平面ABD,且FA=.图1图2(1)求平面FBC′与平面FBA夹角的余弦值;(2)在线段AD上是否存在一点M,使得⊥平面?若存在,求的值;若不存在,说明理由.21.(12分)已知圆C1圆心为坐标原点,且与直线相切(1)求圆C1的标准方程;(2)若直线l过点M(1,2),直线l被圆C1所截得的弦长为,求直线l的方程22.(10分)中国男子篮球职业联赛(ChineseBasketballAssociation),简称中职篮(CBA),由中国国家体育总局篮球运动管理中心举办的男子职业篮球赛事,旨在全面提高中国篮球运动水平,其中诞生了姚明、王治郅、易建联、朱芳雨等球星.该比赛分为常规赛和季后赛.由于新冠疫情关系,某年联赛采用赛会制:所有球队集中在同一个地方比赛,分两个阶段进行,每个阶段采用循环赛,分主场比赛和客场比赛,积分排名前8球队进入季后赛.下表是A队在常规赛60场比赛中的比赛结果记录表.阶段比赛场数主场场数获胜场数主场获胜场数第一阶段30152010第二阶段30152515(1)根据表中数据,完成下面列联表:A队胜A队负合计主场5客场20合计60(2)根据(1)中列联表,判断是否有90%的把握认为比赛的“主客场”与“胜负”之间有关?附:.0.1000.0500.025k2.7063.8415.024

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】利用向量共线的推论可判断A,利用数量积的定义可判断B,利用充要条件的概念可判断C,利用基底的概念可判断D.【详解】对于A,若,,所以三点不共线,故A错误;对于B,因为,故B错误;对于C,由可推出为直角三角形,由为直角三角形,推不出,所以为直角三角形的充分不必要条件是,故C错误;对于D,若为空间的一个基底,则不共面,若不能构成空间的一个基底,设,整理可得,即共面,与不共面矛盾,所以能构成空间的另一个基底,故D正确.故选:D.2、A【解析】对函数进行求导得,进而得时,,在上为增函数,然后判断充分性和必要性即可.【详解】解:因为的定义域是,所以,当时,,在上为增函数.所以在上为增函数,是充分条件;反之,在上为增函数或,不是必要条件.故选:A.【点睛】本题主要考查充分条件和必要条件的判断,属于中档题.3、A【解析】先假设存在这样的直线,分斜率存在和斜率不存在设出直线的方程,当斜率k存在时,与双曲线方程联立,消去,得到关于的一元二次方程,直线与双曲线相交于两个不同点,则,,又根据是线段的中点,则,由此求出与矛盾,故不存在这样的直线满足题意;当斜率不存在时,过点的直线不满足条件,故符合条件的直线不存在.详解】设过点的直线方程为或,①当斜率存在时有,得(*)当直线与双曲线相交于两个不同点,则必有:,即又方程(*)的两个不同的根是两交点、的横坐标,又为线段的中点,,即,,使但使,因此当时,方程①无实数解故过点与双曲线交于两点、且为线段中点的直线不存在②当时,经过点的直线不满足条件.综上,符合条件的直线不存在故选:A4、C【解析】按照程序框图的流程进行计算.【详解】,故输出S的值为.故选:C5、B【解析】由三视图可得该几何体是由平行六面体切割掉一个三棱锥而成,直观图如图所示,所以该几何体的体积为故选B点睛:本题考查了组合体的体积,由三视图还原出几何体,由四棱柱的体积减去三棱锥的体积.6、C【解析】根据“杨辉三角”找出数列1,2,3,3,6,4,10,5,…之间的关系即可。【详解】由题意可得从第3行起的每行第三个数:,所以第行的第三个数为在该数列中,第37项为第21行第三个数,所以该数列的第37项为故选:C【点睛】本题主要考查了归纳、推理的能力,属于中等题。7、A【解析】构造函数,分析该函数的定义域与奇偶性,利用导数分析出函数在上为增函数,从而可知该函数在上为减函数,综合可得出原不等式的解集.【详解】令,则函数的定义域为,且,则函数为偶函数,所以,,当时,,所以,函数在上为增函数,故函数在上为减函数,由等价于或:当时,由可得;当时,由可得.综上所述,不等式的解集为.故选:A.8、D【解析】根据点到直线的距离公式可知可以表示单位圆上点到直线的距离,利用圆的性质结合图形即得.【详解】由题可知,可以表示单位圆上点到直线的距离,设,因直线,即表示恒过定点,根据圆的性质可得.故选:D.9、C【解析】根据成等比数列求得,再根据离心率计算公式即可求得结果.【详解】因为实数成等比数列,故可得,解得或;当时,表示焦点在轴上的椭圆,此时;当时,表示焦点在轴上的双曲线,此时.故选:C.10、B【解析】根据双曲线的一条渐近线方程为,可得,再结合焦距为2和,求得,即可得解.【详解】解:因为双曲线的一条渐近线方程为,所以,即,又因焦距为2,即,即,因为,所以,所以,所以双曲线的方程为.故选:B.11、A【解析】∵且,∴,又,∴,故选A.12、A【解析】根据命题的否定的定义判断【详解】全称命题的否定是特称命题,命题“,都有”的否定为:,使得故选:A二、填空题:本题共4小题,每小题5分,共20分。13、1359【解析】由已知求得,则,结合已知求得,乘以10000得答案【详解】解:由,得,又,,则,估计该农场这种植物高度在区间,上的棵数为故答案为:135914、【解析】求出两圆的圆心坐标,再利用两点式求出直线方程,再化成一般式即可【详解】解:圆,即,两圆的圆心为:和,这两圆的连心线方程为:,即故答案为:15、1717【解析】利用等差数列的前项和公式可求所有数的和.【详解】100以内的正整数中,被3除余1由小到大构成等差数列,其首项为1,公差为3,共有项,它们的和为,故答案为:.16、【解析】根据数列的项的周期性,去求的值即可解决.【详解】由,,可得,,,,,,由此可知数列的项具有周期性,且周期为4,第一周期内的四项之积为1,所以数列的前2022项之积为故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)过点作,垂足为,过点作,垂足为,根据抛物线的定义,得到,求得,即可求得抛物线的方程;(2)设直线的方程为,联立方程组求得,得到,由抛物线的定义得到,根据,求得,设,得到,进而求得,因为为的中点,求得,即可求解.【小问1详解】解:由题意,抛物线,可得其准线方程,如图所示,过点作,垂足为,过点作,垂足为,因为时,,可得,又由抛物线的定义,可得,解得,所以抛物线的方程为.【小问2详解】解:由抛物线,可得,设,因为直线的直线过点,设直线的方程为联立方程组,整理得,可得,则,因为为的中点,所以,由抛物线的定义得,设圆与直线相切于点,因为交于点,所以且,所以,即,解得,设,则,且,可得,因为,所以点为的中点,所以,又因为为的中点,可得,所以,即的面积与的面积的比值为.18、(1);(2)【解析】(1)设数列的公差为d,根据等比中项的概念即可求出公差,再根据等差数列的通项公式即可求出答案;(2)由(1)得,再根据分组求和法即可求出答案【详解】解:(1)设数列的公差为d,由已知得,,即,解得或,又,∴,∴;(2)由(1)得,【点睛】本题主要考查等差数列的通项公式,考查数列的分组求和法,考查计算能力,属于基础题19、(1)证明见解析(2)【解析】(1)连接交于点O,连接OD,通过三角形中位线证明即可;(2)建立空间直角坐标系,利用向量法求解即可.【小问1详解】解法1:如图,连接交于点O,连接OD,因为在三棱柱中,四边形是平行四边形,所以O是的中点,因为D为BC的中点,所以在中,,因为平面,平面,所以平面平面解法2:因为在三棱柱中,面ABC,,所以BA,BC,两两垂直,故以B点为坐标原点,建立如图的空间直角坐标系,因为,所以B(0,0,0),A(2,0,0),D(0,1,0),,,所以,,,设平面的一个法向量为,则,即,令,则,∴,平面,所以平面;【小问2详解】设与平面所成角为,由(1)知平面法向量为,F为中点,∴,,∴即与平面所成角正弦值为.20、(1)(2)不存在,理由见解析【解析】(1)利用垂直关系,以点为原点,建立空间直角坐标系,分别求平面和平面的法向量和,利用公式,即可求解;(2)若满足条件,,利用向量的坐标表示,判断是否存在点满足.【小问1详解】∵,E为BD的中点∴CE⊥BD,又∵平面⊥平面ABD,平面平面,⊥平面,∴⊥平面ABD,如图以E原点,分别以EB、AE、EC′所在直线为x轴、y轴、z轴建立空间直角坐标系,则B(1,0,0),A(0,-,0),D(-1,0,0),F(0,-,2),(0,0,),∴=(-1,-,2),=(-1,0,),=(1,,0),设平面的法向量为=(x,y,z),则,取z=1,得平面的一个法向量=(,1,1),设平面FBA的法向量为=(a,b,c),则取b=1,得平面FBA的一个法向量为=(-,1,0),∴设平面ABD与平面的夹角为θ,则∴平面ABD与平面夹角的余弦值为.【小问2详解】假设在线段AD上存在M(x,y,z),使得平面,设(0≤λ≤1),则(x,y+,z)=(-1,,0),即(x,y+,z)=(-λ,,0),∴,,z=0,∴,是平面的一个法向量由∥,得,此方程无解.∴线段AD上不存点M,使得平面.21、(1)(2)或【解析】(1)由圆心到直线的距离求得半径,可得圆C1的标准方程;(2)当直线的斜率不存在时,求得直线l被圆C1所截得的弦长为,符合题意;当直线l的斜率存在时,设出直线方程,由已知弦长可得圆心到直线的距离,再由点到直线的距离公式列式求k,则直线方程可求【小问1详解】∵原点O到直线的距离为,∴圆C1的标准方程为;

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论