




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
内蒙古呼伦贝尔市莫力达瓦旗尼尔基一中2025届高一上数学期末质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.直线l:与圆C:的位置关系是A.相切 B.相离C.相交 D.不确定2.要得到函数的图象,只需将函数的图象()A.向左平移个单位长度B.向左平移个单位长度C.向右平移个单位长度D.向右平移个单位长度3.设集合M=,N=,则MN等于A.{0} B.{0,5}C.{0,1,5} D.{0,-1,-5}4.过点(5,2),且在y轴上的截距是在x轴上的截距的2倍的直线方程是()A.2x+y-12=0 B.x-2y-1=0或2x-5y=0C.x-2y-1=0 D.2x+y-12=0或2x-5y=05.化为弧度是()A. B.C. D.6.在高一期中考试中,甲、乙两个班的数学成绩统计如下表:班级人数平均分数方差甲302乙203其中,则甲、乙两个班数学成绩的方差为()A.2.2 B.2.6C.2.5 D.2.47.17世纪,在研究天文学的过程中,为了简化大数运算,苏格兰数学家纳皮尔发明了对数,对数的思想方法即把乘方和乘法运算分别转化为乘法和加法,数学家拉普拉斯称赞为“对数的发明在实效上等于把天文学家的寿命延长了许多倍”.已知,,设,则所在的区间为()A. B.C. D.8.已知全集,集合,,那么阴影部分表示的集合为A. B.C. D.9.若-3和1是函数y=loga(mx2+nx-2)的两个零点,则y=logn|x|的图象大致是()A. B.C. D.10.如图,正方体的棱长为1,线段上有两个动点E、F,且,则下列结论中错误的是A.B.C.三棱锥体积为定值D.二、填空题:本大题共6小题,每小题5分,共30分。11.某工厂产生的废气经过滤后排放,过滤过程中废气的污染物含量P(单位:mg/L)与时间t(单位:h)间的关系为,其中,是正的常数.如果在前5h消除了10%的污染物,那么10h后还剩百分之几的污染物________.12.已知为角终边上一点,且,则______13.设函数,若关于x方程有且仅有6个不同的实根.则实数a的取值范围是_______.14.函数的单调递减区间为___________.15.已知角A为△ABC的内角,cosA=-4516.若,,三点共线,则实数的值是__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数为定义在R上的奇函数.(1)求实数a的值;(2)判断函数的单调性,并证明;18.已知函数的图象关于原点对称(1)求实数b的值;(2)若对任意的,有恒成立,求实数k的取值范围19.已知函数(1)若的值域为R,求实数a的取值范围;(2)若,解关于x的不等式.20.已知函数(1)试判断函数的奇偶性并证明;21.已知函数.(1)请用“五点法”画出函数在上的图象(先列表,再画图);(2)求在上的值域;(3)求使取得最值时的取值集合,并求出最值
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】利用点到直线的距离公式求出直线和圆的距离,即可作出判断.【详解】圆C:的圆心坐标为:,则圆心到直线的距离,所以圆心在直线l上,故直线与圆相交故选C【点睛】本题考查的知识要点:直线与圆的位置关系的应用,点到直线的距离公式的应用2、D【解析】化简得到,根据平移公式得到答案.【详解】;故只需向右平移个单位长度故选:【点睛】本题考查了三角函数的平移,意在考查学生对于三角函数的变换的理解的掌握情况.3、C【解析】,选C.4、D【解析】根据直线是否过原点进行分类讨论,结合截距式求得直线方程.【详解】当直线过原点时,直线方程为,即.当直线不过原点时,设直线方程为,代入得,所以直线方程为.故选:D5、D【解析】根据角度制与弧度制的互化公式,正确运算,即可求解.【详解】根据角度制与弧度制的互化公式,可得.故选:D.6、D【解析】根据平均数和方差的计算性质即可计算.【详解】设甲、乙两班学生成绩分别为,甲班平均成绩为,乙班平均成绩为,因为甲、乙两班的平均成绩相等,所以甲、乙两班合在一起后平均成绩依然为,因为,同理,∴甲、乙两班合在一起后的方差为:.故选:D.7、C【解析】利用对数的运算性质求出,由此可得答案.【详解】,所以.故选:C8、D【解析】由韦恩图可知阴影部分表示的集合为,求出,计算得到答案【详解】阴影部分表示的集合为,故选【点睛】本题主要考查的是韦恩图表达集合的关系和运算,属于基础题9、C【解析】运用零点的定义和一元二次方程的解法可得【详解】根据题意得,解得,∵n=2>1由对数函数的图象得答案为C.故选C【点睛】本题考查零点的定义,一元二次方程的解法10、D【解析】可证,故A正确;由∥平面ABCD,可知,B也正确;连结BD交AC于O,则AO为三棱锥的高,,三棱锥的体积为为定值,C正确;D错误.选D二、填空题:本大题共6小题,每小题5分,共30分。11、81%【解析】根据题意,利用函数解析式,直接求解.【详解】由题意可知,,所以.所以10小时后污染物含量,即10小时后还剩81%的污染物.故答案为:81%12、##【解析】利用三角函数定义可得:,即可求得:,再利用角的正弦、余弦定义计算得解【详解】由三角函数定义可得:,解得:,则,所以,,.故答案为:.13、或或【解析】作出函数的图象,设,分关于有两个不同的实数根、,和两相等实数根进行讨论,当方程有两个相等的实数根时,再检验,当方程有两个不同的实数根、时,或,再由二次方程实数根的分布进行讨论求解即可.【详解】作出函数的简图如图,令,要使关于的方程有且仅有个不同的实根,(1)当方程有两个相等的实数根时,由,即,此时当,此时,此时由图可知方程有4个实数根,此时不满足.当,此时,此时由图可知方程有6个实数根,此时满足条件(2)当方程有两个不同的实数根、时,则或当时,由可得则的根为由图可知当时,方程有2个实数根当时,方程有4个实数根,此时满足条件.当时,设由,则,即综上所述:满足条件的实数a的取值范围是或或故答案为:或或【点睛】关键点睛:本题考查利用复合型二次函数的零点个数求参数,考查数形结合思想的应用,解答本题的关键由条件结合函数的图象,分析方程的根情况及其范围,再由二次方程实数根的分布解决问题,属于难题.14、【解析】利用对数型复合函数性质求解即可.【详解】由题知:,解得或.令,则为减函数.所以,为减函数,为增函数,,为增函数,为减函数.所以函数的单调递减区间为.故答案为:15、35【解析】根据同角三角函数的关系,结合角A的范围,即可得答案.【详解】因为角A为△ABC的内角,所以A∈(0,π),因为cosA=-所以sinA=故答案为:316、5【解析】,,三点共线,,即,解得,故答案为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)是R上的增函数,证明详见解析.【解析】(1)由奇函数定义可解得;(2)是上的增函数,可用定义证明.【详解】(1)因为为定义在上的奇函数,所以对任意,,即,所以,因为,所以,即.(2)由(1)知,则是上的增函数,下用定义证明.任取,且,,当时,,又,所以,即,故是上的增函数.18、(1)-1(2)【解析】(1)由得出实数b的值,再验证奇偶性即可;(2)由结合函数的单调性解不等式,结合基本不等式求解得出实数k的取值范围【小问1详解】∵函数的定义域为R,且为奇函数,解得经检验,当b=-1时,为奇函数,满足题意故实数b的值为-1【小问2详解】,∴f(x)在R上单调递增,在上恒成立,在上恒成立(当且仅当x=0时,取“=”),则∴实数k的取值范围为19、(1)或.(2)见解析.【解析】(1)当时,的值域为,当时,的值域为,如满足题意则,解之即可;(2)当时,,即恒成立,当时,即,分类讨论解不等式即可.试题解析:(1)当时,的值域为当时,的值域为,的值域为,解得或的取值范围是或.(2)当时,,即恒成立,当时,即(ⅰ)当即时,无解:(ⅱ)当即时,;(ⅲ)当即时①当时,②当时,综上(1)当时,解集为(2)当时,解集(3)当时,解集为(4)当时,解集为20、(1)为奇函数;证明见解析;(2).【解析】(1)利用奇函数的定义即证;(2)由题可得当时,为增函数,法一利用对勾函数的性质可得,即求;法二利用函数单调性的定义可得成立,即求.【小问1详解】当时,,则,当;当时,,满足;当时,,则,,所以对,均有,即函数为奇函数;【小问2详解】∵函数为R上的奇函数,且,,,所以函数在上为增函数,则在定义域内为增函数,解法一:因函数为奇函数,且在定义域内为增函数,则当时,为增函数当时,因为,只需要,则;解法二:因为函数为奇函数,且在定义域内为增函数,则当时,为增函数设对于任意,且,则有因为,则,又因为,则,欲使当时,为增函数,则,所以,当时,;;,所以,为R上增函数时,21、(1)答案见解析(2)(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 校园食堂托管承包经营合同规范
- 跨界合作车牌租赁使用合同
- 别墅区房产出售专业代理服务合同
- 车辆运输安全风险评估与应急响应合同
- 财务总监离职保密及商业秘密保护合同范本
- 专业展会活动策划执行场推广营销服务合同范本
- 变压器设备租赁合同
- 知识产权运营股东专利技术股权交易合同
- 生态农业项目购销合同终止及可持续发展协议
- 跨国合作股份并购合同范本
- 第10课 养成遵纪守法好习惯
- 人教版英语七年级下册跨学科融合计划
- 砖厂安全生产管理制度
- 医院设备采购预算编制要点
- 汽车尾气治理技术
- 新教师科研能力提升措施
- 《现代农业生物技术育种方法》课件
- 企业慈善捐赠指引
- 部编版四年级道德与法治上册第8课《网络新世界》
- 房地产开发项目风险评估报告
- 2025年广东中考物理学科模拟试卷(广东专属)
评论
0/150
提交评论