2025届河北省饶阳中学数学高一上期末考试模拟试题含解析_第1页
2025届河北省饶阳中学数学高一上期末考试模拟试题含解析_第2页
2025届河北省饶阳中学数学高一上期末考试模拟试题含解析_第3页
2025届河北省饶阳中学数学高一上期末考试模拟试题含解析_第4页
2025届河北省饶阳中学数学高一上期末考试模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届河北省饶阳中学数学高一上期末考试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知为奇函数,当时,,则()A.3 B.C.1 D.2.已知函数,若当时,恒成立,则实数的取值范围是A. B.C. D.3.设,则等于()A. B.C. D.4.已知是第四象限角,是角终边上的一个点,若,则()A.4 B.-4C. D.不确定5.若a>0,且a≠1,x∈R,y∈R,且xy>0,则下列各式不恒成立的是()①logax2=2logax;②logax2=2loga|x|;③loga(xy)=logax+logay;④loga(xy)=loga|x|+loga|y|.A.②④ B.①③C.①④ D.②③6.若,,,则()A. B.C. D.7.已知函数,且,则()A. B.C. D.8.下列集合与集合相等的是()A. B.C. D.9.函数f(x)=的定义域为A.[1,3)∪(3,+∞) B.(1,+∞)C.[1,2) D.[1,+∞)10.计算sin(-1380°)的值为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知满足任意都有成立,那么的取值范围是___________.12.已知扇形的周长是2022,则扇形面积最大时,扇形的圆心角的弧度数是___________.13.已知在区间上单调递减,则实数的取值范围是____________.14.如图,在棱长均相等的正四棱锥最终,为底面正方形的重心,分别为侧棱的中点,有下列结论:①平面;②平面平面;③;④直线与直线所成角的大小为其中正确结论的序号是______.(写出所有正确结论的序号)15.新冠疫情防控常态化,核酸检测应检尽检!核酸检测分析是用荧光定量PCR法,通过化学物质的荧光信号,对在PCR扩增进程中成指数级增加的靶标DNA实时检测,在PCR扩增的指数时期,荧光信号强度达到阈值时,DNA的数量与扩增次数n满足:,其中p为扩增效率,为DNA的初始数量.已知某被测标本DNA扩增8次后,数量变为原来的100倍,那么该标本的扩增效率p约为___________;该被测标本DNA扩增13次后,数量变为原来的___________倍.(参考数据:,,,,)16.如图,网格纸上正方形小格的边长为1,图中粗线画出的是某三棱锥的三视图,则该三棱锥的体积为__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,,且在上的最小值为0.(1)求的最小正周期及单调递增区间;(2)求的最大值以及取得最大值时x的取值集合.18.已知为第三象限角,且.(1)化简;(2)若,求的值.19.设集合,,不等式的解集为(1)当a为0时,求集合、;(2)若,求实数的取值范围20.已知函数,.(1)对任意的,恒成立,求实数k的取值范围;(2)设,证明:有且只有一个零点,且.21.设全集U=R,集合A={x|2x-1≥1},B={x|x2-4x-5<0}(Ⅰ)求A∩B,(∁UA)∪(∁UB);(Ⅱ)设集合C={x|m+1<x<2m-1},若B∩C=C,求实数m的取值范围

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】根据奇偶性和解析式可得答案.【详解】由题可知,故选:B2、D【解析】是奇函数,单调递增,所以,得,所以,所以,故选D点睛:本题考查函数的奇偶性和单调性应用.本题中,结合函数的奇偶性和单调性的特点,转化得到,分参,结合恒成立的特点,得到,求出参数范围3、B【解析】由全集,以及与,找出与的补集,求出补集的并集即可【详解】,,则故选:B4、B【解析】利用三角函数的定义求得.【详解】依题意是第四象限角,所以,.故选:B5、B【解析】对于①中,若x<0,则不成立;③中,若x<0,y<0也不成立,②④根据运算性质可得均正确.【详解】∵xy>0,∴①中,若x<0,则不成立;③中,若x<0,y<0也不成立,②logax2=2loga|x|,④loga(xy)=loga|x|+loga|y|,根据对数运算性质得两个都正确;故选:B.6、A【解析】先变形,然后利用指数函数的性质比较大小即可【详解】,因为在上为减函数,且,所以,所以,故选:A7、B【解析】构造函数,判断的单调性和奇偶性,由此化简不等式,即得.【详解】∵函数,令,则,∴的定义域为,,所以函数为奇函数,又,当增大时,增大,即在上递增,由,可得,即,∴,∴,即.故选:B.8、C【解析】根据各选项对于的集合的代表元素,一一判断即可;【详解】解:集合,表示含有两个元素、的集合,对于A:,表示含有一个点的集合,故不相等;对于B:,表示的是点集,故不相等;对于C:,表示方程的解集,因为的解为,或,所以对于D:,故不相等故选:C9、D【解析】由根式内部的代数式大于等于0,分式的分母不为0两类不等式组求解【详解】要使原函数有意义,需满足,解得x≥1.∴函数f(x)=的定义域为[1,+∞)故选D.【点睛】本题考查函数的定义域及其求法,解题的关键是是根式内部的代数式大于等于0,分式的分母不为010、D【解析】根据诱导公式以及特殊角三角函数值求结果.【详解】sin(-1380°)=sin(-1380°+1440°)=sin(60°)=故选:D【点睛】本题考查诱导公式以及特殊角三角函数值,考查基本求解能力,属基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由题意可知,分段函数在上单调递减,因此分段函数的每一段都是单调递减,且左边一段的最小值不小于右边的最大值,即可得到实数的取值范围.【详解】由任意都有成立,可知函数在上单调递减,又因,所以,解得.故答案为:.12、2【解析】设扇形的弧长为,半径为,则,将面积最值转化为一元二次函数的最值;【详解】设扇形的弧长为,半径为,则,,当时,扇形面积最大时,此时,故答案为:13、【解析】根据复合函数单调性的判断方法,结合对数函数的定义域,即可求得的取值范围.【详解】在区间上单调递减由对数部分为单调递减,且整个函数单调递减可知在上单调递增,且满足所以,解不等式组可得即满足条件的取值范围为故答案为:【点睛】本题考查了复合函数单调性的应用,二次函数的单调性,对数函数的性质,属于中档题.14、①②③【解析】连接AC,易得PC∥OM,可判结论①证得平面PCD∥平面OMN,可判结论②正确由勾股数可得PC⊥PA,得到OM⊥PA,可判结论③正确根据线线平行先找到直线PD与直线MN所成的角为∠PDC,知三角形PDC为等边三角形,所以∠PDC=60°,可判④错误【详解】如图,连接AC,易得PC∥OM,所以PC∥平面OMN,结论①正确同理PD∥ON,所以平面PCD∥平面OMN,结论②正确由于四棱锥的棱长均相等,所以AB2+BC2=PA2+PC2=AC2,所以PC⊥PA,又PC∥OM,所以OM⊥PA,结论③正确由于M,N分别为侧棱PA,PB的中点,所以MN∥AB,又四边形ABCD为正方形,所以AB∥CD,所以直线PD与直线MN所成的角即为直线PD与直线CD所成的角,为∠PDC,知三角形PDC为等边三角形,所以∠PDC=60°,故④错误故答案为①②③【点睛】本题考查线面平行、面面平行,考查线线角,考查学生分析解决问题的能力,属于中档题15、①.0.778②.1788【解析】①对数运算,由某被测标本DNA扩增8次后,数量变为原来的100倍,可以求出p;②由n=13,可以求数量是原来的多少倍.【详解】故答案为:①0.778;②1778.16、1【解析】由图可知,该三棱锥的体积为V=三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)最小正周期为,(2)3,【解析】(1)直接利用周期公式可求出周期,由可求出增区间,(2)由得,从而可求出最小值,则可求出的值,进而可求出函数解析式,则可求出最大值以及取得最大值时x的取值集合【小问1详解】的最小正周期为.令,,解得,.所以的单调递增区间为.【小问2详解】当时,.,解得.所以.当,,即,时,取得最大值,且最大值为3.故的最大值为3,取得最大值时x的取值集合为18、(1);(2)﹒【解析】(1)利用三角函数的诱导公式即可化简;(2)根据求出sinα,=-cosα=即可求得﹒【小问1详解】【小问2详解】∵,∴,又为第三象限角,∴,∴19、(1),;(2)或【解析】(1)根据题意,由可得结合,解不等式可得集合,(2)根据题意,分是否为空集2种情况讨论,求出的取值范围,综合即可得答案【详解】解:(1)根据题意,集合,,当时,,,则,(2)根据题意,若,分2种情况讨论:①,当时,即时,,成立;②,当时,即时,,若,必有,解可得,综合可得的取值范围为或【点睛】本题考查集合的包含关系的应用,(2)中注意讨论为空集,属于基础题20、(1);(2)证明见解析.【解析】(1)利用的单调性以及对数函数的单调性,即可求出的范围(2)对进行分类讨论,分为:和,利用零点存在定理和数形结合进行分析,即可求解【详解】解:(1)因为是增函数,是减函数,所以在上单调递增.所以的最小值为,所以,解得,所以实数k的取值范围是.(2)函数的图象在上连续不断.①当时,因为与在上单调递增,所以在上单调递增.因为,,所以.根据函数零点存在定理,存在,使得.所以在上有且只有一个零点.②当时,因为单调递增,所以,因为.所以.所以在上没有零点.综上:有且只有一个零点.因为,即,所以,.因为在上单调递减,所以,所以.【点睛】关键点睛:对进行分类讨论时,①当时,因为与在上单调递增,再结合零点存在定理,即可求解;②当时,恒成立,所以,在上没有零点;最后利用,得到,然后化简可求解。本题考查函数的性质,函数的零点等知识;考查学生运算求解,推理论证的能力;考查数形结合,分类与整合,函数与方程,化归与转化的数学思想,属于难题21、(Ⅰ){x|x<1或x≥5},(Ⅱ)(-∞,3].【解析】(Ⅰ)求出集合A,B,由此能出A∩B,(∁UA)∪(∁UB)(Ⅱ)由集合C={x|m+1<x<2m﹣1},B∩C=C,得C⊆B,当C=∅时,2m﹣1<m+1,当C≠∅时,由C⊆B得,由此能求出m的取值范围【详解】解:(Ⅰ)∵全集U=R,集合A=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论