![华东师大二附中2025届高二数学第一学期期末联考试题含解析_第1页](http://file4.renrendoc.com/view7/M01/13/2C/wKhkGWcIDH6AR_DGAAHn-qS3rdk817.jpg)
![华东师大二附中2025届高二数学第一学期期末联考试题含解析_第2页](http://file4.renrendoc.com/view7/M01/13/2C/wKhkGWcIDH6AR_DGAAHn-qS3rdk8172.jpg)
![华东师大二附中2025届高二数学第一学期期末联考试题含解析_第3页](http://file4.renrendoc.com/view7/M01/13/2C/wKhkGWcIDH6AR_DGAAHn-qS3rdk8173.jpg)
![华东师大二附中2025届高二数学第一学期期末联考试题含解析_第4页](http://file4.renrendoc.com/view7/M01/13/2C/wKhkGWcIDH6AR_DGAAHn-qS3rdk8174.jpg)
![华东师大二附中2025届高二数学第一学期期末联考试题含解析_第5页](http://file4.renrendoc.com/view7/M01/13/2C/wKhkGWcIDH6AR_DGAAHn-qS3rdk8175.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
华东师大二附中2025届高二数学第一学期期末联考试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知直线的方程为,则该直线的倾斜角为()A. B.C. D.2.在正方体中,为棱的中点,则异面直线与所成角的正切值为A. B.C. D.3.某商场为了解销售活动中某商品销售量与活动时间之间的关系,随机统计了某次销售活动中的商品销售量与活动时间,并制作了下表:活动时间销售量由表中数据可知,销售量与活动时间之间具有线性相关关系,算得线性回归方程为,据此模型预测当时,的值为()A B.C. D.4.已知为虚数单位,复数满足为纯虚数,则的虚部为()A. B.C. D.5.若椭圆的一个焦点为,则的值为()A.5 B.3C.4 D.26.在区间内随机取一个数x,则使得的概率为()A. B.C. D.7.我国古代数学名著《算法统宗》记有行程减等问题:三百七十八里关,初行健步不为难次日脚痛减一半,六朝才得到其关.要见每朝行里数,请公仔细算相还.意为:某人步行到378里的要塞去,第一天走路强壮有力,但把脚走痛了,次日因脚痛减少了一半,他所走的路程比第一天减少了一半,以后几天走的路程都比前一天减少一半,走了六天才到达目的地.请仔细计算他每天各走多少路程?在这个问题中,第四天所走的路程为()A.96 B.48C.24 D.128.在长方体中,若,,则异而直线与所成角的余弦值为()A. B.C. D.9.已知直线在两个坐标轴上的截距之和为7,则实数m的值为()A.2 B.3C.4 D.510.已知实数满足方程,则的最大值为()A.3 B.2C. D.11.若,则n的值为()A.7 B.8C.9 D.1012.准线方程为的抛物线的标准方程为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知,若在区间上有且只有一个极值点,则a的取值范围是______14.已知数列满足0,,则数列的通项公式为____,则数列的前项和______15.设,若不等式在上恒成立,则的取值范围是______.16.已知,则曲线在点处的切线方程是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知圆,点.(1)若,半径为的圆过点,且与圆相外切,求圆的方程;(2)若过点的两条直线被圆截得的弦长均为,且与轴分别交于点、,,求.18.(12分)已知抛物线焦点是,斜率为的直线l经过F且与抛物线相交于A、B两点(1)求该抛物线的标准方程和准线方程;(2)求线段AB的长19.(12分)如图,在四棱锥中,底面,底面是边长为2的正方形,,F,G分别是,的中点(1)求证:平面;(2)求平面与平面的夹角的大小20.(12分)已知曲线在处的切线方程为,且.(1)求的解析式;(2)若时,不等式恒成立,求实数的取值范围.21.(12分)已知函数其中.(1)当时,求函数的单调区间;(2)当时,函数有两个零点,,满足,证明.22.(10分)求证:(1)是上的偶函数;(2)是上的奇函数.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】设直线倾斜角为,则,即可求出.【详解】设直线的倾斜角为,则,又因为,所以.故选:D.2、C【解析】利用正方体中,,将问题转化为求共面直线与所成角的正切值,在中进行计算即可.【详解】在正方体中,,所以异面直线与所成角为,设正方体边长为,则由为棱的中点,可得,所以,则.故选C.【点睛】求异面直线所成角主要有以下两种方法:(1)几何法:①平移两直线中的一条或两条,到一个平面中;②利用边角关系,找到(或构造)所求角所在的三角形;③求出三边或三边比例关系,用余弦定理求角;(2)向量法:①求两直线的方向向量;②求两向量夹角的余弦;③因为直线夹角为锐角,所以②对应的余弦取绝对值即为直线所成角的余弦值.3、C【解析】求出样本中心点的坐标,代入回归直线方程,求出的值,再将代入回归方程即可得解.【详解】由表格中的数据可得,,将样本中心点的坐标代入回归直线方程可得,解得,所以,回归直线方程为,故当时,.故选:C.4、D【解析】先设,代入化简,由纯虚数定义求出,即可求解.【详解】设,所以,因为为纯虚数,所以,解得,所以的虚部为:.故选:D.5、B【解析】由题意判断椭圆焦点在轴上,则,解方程即可确定的值.【详解】有题意知:焦点在轴上,则,从而,解得:.故选:B.6、A【解析】解一元一次不等式求不等式在上解集,再利用几何概型的长度模型求概率即可.【详解】由,可得,其中长度为1,而区间长度为4,所以,所求概率为故选:A.7、C【解析】每天所走的里程构成公比为的等比数列,设第一天走了里,利用等比数列基本量代换,直接求解.【详解】由题意可知:每天所走的里程构成公比为的等比数列.第一天走了里,第4天走了.故选:C8、C【解析】通过平移把异面直线平移到同一平面中,所以取,的中点,易知且过中心点,所以异而直线与所成角为和所成角,通过解三角形即可得解.【详解】根据长方体的对称性可得体对角线过中心点,取,的中点,易知且过中心点,所以异而直线和所成角为和所成角,连接,在中,,,,所以则异而直线与所成角的余弦值为:,故选:C.9、C【解析】求出直线方程在两坐标轴上的截距,列出方程,求出实数m的值.【详解】当时,,故不合题意,故,,令得:,令得:,故,解得:.故选:C10、D【解析】将方程化为,由圆的几何性质可得答案.【详解】将方程变形为,则圆心坐标为,半径,则圆上的点的横坐标的范围为:则x的最大值是故选:D.11、D【解析】根据给定条件利用组合数的性质计算作答【详解】因为,则由组合数性质有,即,所以n的值为10.故选:D12、D【解析】的准线方程为.【详解】的准线方程为.故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】求导得,进而根据题意在上有且只有一个变号零点,再根据零点的存在性定理求解.【详解】解:,∵在区间上有且只有一个极值点,∴在上有且只有一个变号零点,∴,解得∴a的取值范围是.故答案为:14、①.②.【解析】第一空:先构造等比数列求出,即可求出的通项公式;第二空:先求出,令,通过错位相减求出的前项和为,再结合等差数列的求和公式及分组求和即可求解.【详解】第一空:由可得,又,则是以1为首项,2为公比的等比数列,则,则;第二空:,设,前项和为,则,,两式相减得,则,又,则.故答案为:;.15、【解析】构造,利用导数求其最大值,结合已知不等式恒成立,即可确定的范围.【详解】令,则且,若得:;若得:;所以在上递增,在上递减,故,要使在上恒成立,即.故答案为:.16、【解析】求导,得到,写出切线方程.【详解】因为,所以,则,所以曲线在点处的切线方程是,即,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)或(2)【解析】(1)设圆心,根据已知条件可得出关于、的方程组,解出、的值,即可得出圆的方程;(2)分析可知直线、的斜率存在,设过点且斜率存在的直线的方程为,即,利用勾股定理可得出,可知直线、的斜率、是关于的二次方程的两根,求出、的坐标,结合韦达定理可求得的值.【小问1详解】解:设圆心,圆的圆心为,由题意可得,解得或,因此,圆的方程为或.【小问2详解】解:若过点的直线斜率不存在,则该直线的方程为,圆心到直线的距离为,不合乎题意.设过点且斜率存在的直线的方程为,即,由题意可得,整理可得,设直线、的斜率分别为、,则、为关于的二次方程的两根,,由韦达定理可得,,在直线的方程中,令,可得,即点在直线的方程中,令,可得,即点,所以,,解得.18、(1)抛物线的方程为,其准线方程为,(2)【解析】(1)根据焦点可求出的值,从而求出抛物线的方程,即可得到准线方程;(2)设,,,,将直线的方程与抛物线方程联立消去,整理得,得到根与系数的关系,由抛物线的定义可知,代入即可求出所求【小问1详解】解:由焦点,得,解得所以抛物线的方程为,其准线方程为,【小问2详解】解:设,,,直线的方程为.与抛物线方程联立,得,消去,整理得,由抛物线定义可知,所以线段的长为19、(1)证明见解析(2)【解析】(1)取中点连接,连接,证得四边形为平行四边形,,再证面,即可得到证明结果;(2)建立空间坐标系,求面和面的法向量,即可得到两个面的二面角的余弦值,进而得到二面角大小.【小问1详解】如上图,取中点连接,连接,均为线段中点,且,又G是的中点,且且四边形为平行四边形为等腰直角三角形,为斜边中点,面,面面又面.【小问2详解】建立如图坐标系,设面的法向量为设面的法向量为两个法向量的夹角余弦值为:,由图知两个面的二面角为钝角,故夹角为.20、(1);(2).【解析】(1)根据导数的几何意义得,结合对数的运算性质求出m,利用直线的点斜式方程即可得出切线方程;(2)由(1)将不等式变形为,利用导数研究函数在、、时的单调性,即可得出结果.【小问1详解】,∴,,,,,切线方程为,即,∴.【小问2详解】令,,,当时,,所以在上单调递增,所以,即符合题意;当时,设,①当,,,所以在上单调递增,,所以在上单调递增,所以,故符合题意;②当时,,,所以在上递增,在上递减,且,所以当时,,则在上单调递减,且,故,,舍去.综上:21、(1)单调递增区间,无递减区间;(2)证明见解析【解析】(1)求出函数的导数,从而判断其正负,确定函数的单调区间;(2)根据题意可得到,进而变形为,然后换元令,将证明的问题转换为成立的问题,从而构造新函数,求新函数的导数,判断其单调性,求其最值,进而证明不等式成立.【小问1详解】时,,,令,当时,,当时,,故,则,故是单调递增函数,即的单调递增区间为,无递减区间;【小问2详解】当时,函数有两个零点,,满足,即,所以,则,令,由于,则,则x2=tx故,要证明,只需证明,即证,设,令,则,当时,,即在时为增函数,故,即,所以在时为增函数,即,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年船舶润滑油供应合同
- 2025年机关单位临时工兼职人员合同
- 2025年积分销售合同协议书示例
- 2025年医疗设备策划合作租赁与销售框架合同
- 2025年住宅项目园林景观设计合同
- 2025年农地耕作权交换协议
- 2025年专利技术合同争议处理方法
- 2025年企业资产重组授权代理协议指导
- 2025年智能穿戴项目申请报告模式
- 2025年共同投资合作成果合作协议书
- 软件系统项目实施方案(共3篇)
- 2024年全国现场流行病学调查职业技能竞赛考试题库-上部分(600题)
- 2025年中国铁路设计集团有限公司招聘笔试参考题库含答案解析
- (一模)晋城市2025年高三年第一次模拟考试 物理试卷(含AB卷答案解析)
- 实验室5S管理培训
- 医院工程施工重难点分析及针对性措施
- 2025年春节安全专题培训(附2024年10起重特大事故案例)
- GB/T 44958-2024化工设备安全管理规范
- 《化妆品包装材料相容性试验评估指南》
- 6张精美甘特图图表可编辑课件模板
- 2025年轧钢原料工技能考试题库
评论
0/150
提交评论