山西省忻州一中、临汾一中、精英中学、鄂尔多斯一中2025届数学高一上期末监测模拟试题含解析_第1页
山西省忻州一中、临汾一中、精英中学、鄂尔多斯一中2025届数学高一上期末监测模拟试题含解析_第2页
山西省忻州一中、临汾一中、精英中学、鄂尔多斯一中2025届数学高一上期末监测模拟试题含解析_第3页
山西省忻州一中、临汾一中、精英中学、鄂尔多斯一中2025届数学高一上期末监测模拟试题含解析_第4页
山西省忻州一中、临汾一中、精英中学、鄂尔多斯一中2025届数学高一上期末监测模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省忻州一中、临汾一中、精英中学、鄂尔多斯一中2025届数学高一上期末监测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列各组函数表示同一函数的是()A., B.,C., D.,2.若角的终边经过点,且,则()A.﹣2 B.C. D.23.下列函数中,最小正周期为的奇函数是()A. B.C. D.4.已知函数(ω>0),对任意x∈R,都有≤,并且在区间上不单调,则ω的最小值是()A.6 B.7C.8 D.95.已知函数,若则a的值为(

)A. B.C.或 D.或6.已知函数的部分图象如图所示,点,是该图象与轴的交点,过点作直线交该图象于两点,点是的图象的最高点在轴上的射影,则的值是A B.C.1 D.27.若,且,则()A. B.C. D.8.已知等边两个顶点,且第三个顶点在第四象限,则边所在的直线方程是A. B.C. D.9.设,,,则()A. B.C. D.10.设,,下列图形能表示从集合A到集合B的函数图像的是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.不等式的解集为_____________.12.若将函数的图像向左平移个单位后所得图像关于轴对称,则的最小值为___________.13.函数的单调递增区间为__________14.函数最小值为______15.过两直线2x+y-8=0和x-2y+1=0的交点,且平行于直线4x-3y-7=0的直线方程为_______________.16.边长为3的正方形的四个顶点都在球上,与对角线的夹角为45°,则球的体积为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)求函数的单调递增区间;(2)将函数的图象向右平移个单位后得到的图象,求在区间上的最小值.18.已知函数的图象两相邻对称轴之间的距离是,若将的图象先向右平移个单位长度,再向上平移2个单位长度后,所得图象关于轴对称且经过坐标原点.(1)求的解析式;(2)若对任意,恒成立,求实数的取值范围.19.已知全集,若集合,.(1)若,求;(2)若,求实数的取值范围.20.已知向量,.(1)求的值;(2)若向量满足,,求向量的坐标.21.2015年10月,实施了30多年的独生子女政策正式宣告终结,党的十八届五中全会公报宣布在我国全面放开二胎政策.2021年5月31日,中共中央政治局召开会议,会议指出进一步优化生育政策,实施一对夫妻可以生育三个子女政策及配套支持措施,有利于改善我国人口结构,落实积极应对人口老龄化国家战略,保持我国人力资源禀赋优势.某镇2021年1月,2月,3月新生儿的人数分别为52,61,68,当年4月初我们选择新生儿人数和月份之间的下列两个函数关系式①;②(,,,,都是常数),对2021年新生儿人数进行了预测.(1)请你利用所给的1月,2月,3月份数据,求出这两个函数表达式;(2)结果该地在4月,5月,6月份的新生儿人数是74,78,83,你认为哪个函数模型更符合实际?并说明理由.(参考数据:,,,,)

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】根据相同函数的定义,分别判断各个选项函数的定义域和对应关系是否都相同,即可得出答案.【详解】解:对于A,两个函数的定义域都是,,对应关系完全一致,所以两函数是相同函数,故A符合题意;对于B,函数的定义域为,函数的定义域为,故两函数不是相同函数,故B不符题意;对于C,函数的定义域为,函数的定义域为,故两函数不是相同函数,故C不符题意;对于D,函数的定义域为,函数的定义域为,故两函数不是相同函数,故D不符题意.故选:A.2、D【解析】根据三角函数定义得到,计算得到答案.【详解】故选:【点睛】本题考查了三角函数定义,属于简单题.3、C【解析】根据题意,分别判断四个选项中的函数的最小正周期和奇偶性即可,其中A、C选项中的函数先要用诱导公式化简.【详解】A选项:,其定义域为,,为偶函数,其最小正周期为,故A错误.B选项:,其最小正周期为,函数定义域为,,函数不是奇函数,故B错误.C选项:其定义域为,,函数为奇函数,其最小正周期为,故C正确.D选项:函数定义域为,,函数为偶函数,其最小正周期,故D错误.故选:C.4、B【解析】根据,得为函数的最大值,建立方程求出的值,利用函数的单调性进行判断即可【详解】解:对任意,都有,为函数的最大值,则,,得,,在区间,上不单调,,即,即,得,则当时,最小.故选:B.5、D【解析】按照分段函数的分类标准,在各个区间上,构造求解,并根据区间对所求的解,进行恰当的取舍即可.令,则或,解之得.【点睛】本题主要考查分段函数,属于基础题型.6、B【解析】分析:由图象得到函数的周期,进而求得.又由条件得点D,E关于点B对称,可得,然后根据数量积的定义求解可得结果详解:由图象得,∴,∴又由图象可得点B为函数图象的对称中心,∴点D,E关于点B对称,∴,∴故选B点睛:本题巧妙地将三角函数的图象、性质和向量数量积的运算综合在一起,考查学生分析问题和解决问题的能力.解题的关键是读懂题意,通过图象求得参数;另外,根据函数图象的对称中心将向量进行化简,从而达到能求向量数量积的目的7、D【解析】根据给定条件,将指数式化成对数式,再借助换底公式及对数运算法则计算即得.【详解】因为,于是得,,又因为,则有,即,因此,,而,解得,所以.故选:D8、C【解析】如图所示,直线额倾斜角为,故斜率为,由点斜式得直线方程为.考点:直线方程.9、C【解析】根据指数函数和对数函数的单调性判断,,的范围即可比较的大小.【详解】因为,即,,即,,即,所以,故选:C.10、D【解析】从集合A到集合B的函数,即定义域是A,值域为B,逐项判断即可得出结果.【详解】因为从集合A到集合B的函数,定义域是A,值域为B;所以排除A,C选项,又B中出现一对多的情况,因此B不是函数,排除B.故选D【点睛】本题主要考查函数图像,能从图像分析函数的定义域和值域即可,属于基础题型.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】将不等式转化为,利用指数函数的单调性求解.【详解】不等式为,即,解得,所以不等式的解集为,故答案为:12、【解析】利用辅助角公式将函数化简,再根据三角函数的平移变换及余弦函数的性质计算可得;【详解】解:因,将的图像向左平移个单位,得到,又关于轴对称,所以,,所以,所以当时取最小值;故答案为:13、【解析】由可得,或,令,因为在上递减,函数在定义域内递减,根据复合函数的单调性可得函数的单调递增区间为,故答案为.14、【解析】根据,并结合基本不等式“1”的用法求解即可.【详解】解:因为,所以,当且仅当时,等号成立故函数的最小值为.故答案为:15、【解析】联立两直线方程求得交点坐标,求出平行于直线4x-3y-7=0的直线的斜率,由点斜式的直线方程,并化为一般式【详解】联立,解得∴两条直线2x+y-8=0和x-2y+1=0的交点为(3,2),∵直线4x-3y-7=0的斜率为,∴过两条直线2x+y-8=0和x-2y+1=0的交点,且平行于直线4x-3y-7=0的直线的方程为y-2=(x-3)即为4x-3y-6=0故答案为4x-3y-6=0【点睛】本题考查了直线的一般式方程与直线平行的关系,训练了二元一次方程组的解法,是基础题16、【解析】根据给定条件结合球的截面小圆性质求出球O的半径,再利用球的体积公式计算作答.【详解】因边长为3的正方形的四个顶点都在球上,则正方形的外接圆是球O的截面小圆,其半径为,令正方形的外接圆圆心为,由球面的截面小圆性质知是直角三角形,且有,而与对角线的夹角为45°,即是等腰直角三角形,球O半径,所以球体积为.故答案为:【点睛】关键点睛:涉及求球的表面积、体积问题,利用球的截面小圆性质是解决问题的关键.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)-2.【解析】(1)化简f(x)解析式,根据正弦函数复合函数单调性即可求解;(2)根据求出的范围,再根据正弦函数最值即可求解.【小问1详解】.由得f(x)的单调递增区间为:;【小问2详解】将函数的图象向右平移个单位后得到的图象,则.,∴.18、(1);(2)【解析】(1)根据周期计算,,时满足条件,即,过原点得到,得到答案.(2)设,,根据函数最值得到,计算得到答案.【详解】(1),,故.向右平移个单位长度,再向上平移2个单位长度得到y=.即,故,即,时满足条件,即,,故.故(2),故,故,.设,即恒成立.即的最大值小于等于零即可.故满足:,即,解得【点睛】本题考查了三角函数解析式,函数恒成立问题,将恒成立问题转化为最值问题是解题的关键.19、(1)(2)【解析】(1)利用集合的交集及补集的定义直接求解即可;(2)由可得,利用集合的包含关系求解即可.【详解】(1)当时,,所以,因为,所以;(2)由得,,所以【点睛】本题主要考查了集合的运算及包含关系求参,属于基础题.20、(1)7;(2).【解析】(1)先计算,再求模即可;(2)设,进而计算,,再根据垂直与共线的坐标关系求解即可.【详解】解:(1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论