版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届宁夏回族自治区育才中学高二数学第一学期期末综合测试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.过点且垂直于直线的直线方程是()A. B.C. D.2.若数列{an}满足……,则称数列{an}为“半差递增”数列.已知“半差递增”数列{cn}的前n项和Sn满足,则实数t的取值范围是()A. B.(-∞,1)C. D.(1,+∞)3.已知等比数列中,,,则公比()A. B.C. D.4.下列函数求导错误的是()A.B.C.D.5.我国的刺绣有着悠久的历史,如图,(1)(2)(3)(4)为刺绣最简单的四个图案,这些图案都是由小正方形构成,小正方形个数越多刺绣越漂亮.现按同样的规律刺绣(小正方形的摆放规律相同),设第个图形包含个小正方形,则的表达式为()A. B.C. D.6.已知,且,则实数的值为()A. B.3C.4 D.67.已知等比数列的前项和为,若,,则()A.20 B.30C.40 D.508.已知双曲线(,)的左、右焦点分别为,,点A的坐标为,点P是双曲线在第二象限的部分上一点,且,点Q是线段的中点,且,Q关于直线PA对称,则双曲线的离心率为()A.3 B.2C. D.9.从编号为1~120的商品中利用系统抽样的方法抽8件进行质检,若所抽样本中含有编号66的商品,则下列编号一定被抽到的是()A.111 B.52C.37 D.810.一直线过点,则此直线的倾斜角为()A.45° B.135°C.-45° D.-135°11.已知满约束条件,则的最大值为()A.0 B.1C.2 D.312.在等差数列中,,则()A.9 B.6C.3 D.1二、填空题:本题共4小题,每小题5分,共20分。13.点P(8,1)平分椭圆x2+4y2=4的一条弦,则这条弦所在直线的方程是_______.14.分别过椭圆的左、右焦点、作两条互相垂直的直线、,它们的交点在椭圆的内部,则椭圆的离心率的取值范围是________15.已知不等式有且只有两个整数解,则实数a的范围为___________16.从甲、乙、丙、丁4位同学中,选出2位同学分别担任正、副班长的选法数可以用表示为____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)“双十一”已经成为网民们的网购狂欢节,某电子商务平台对某市的网民在今年“双十一”的网购情况进行摸底调查,用随机抽样的方法抽取了100人,其消费金额(百元)的频率分布直方图如图1所示:(1)利用图1,求网民消费金额的平均值和中位数;(2)把下表中空格里的数填上,能否有的把握认为网购消费与性别有关.男女合计30合计45附表:P(χ2≥k0)0.100.050.012.7063.8416.635参考公式:χ2=.18.(12分)已知抛物线过点.(1)求抛物线方程;(2)若直线与抛物线交于两点两点在轴的两侧,且,求证:过定点.19.(12分)在△ABC中,角A,B,C的对边分别为a,b,c,且满足bcosA+(2c+a)cosB=0(1)求角B的大小;(2)若b=4,△ABC的面积为,求a+c的值20.(12分)如图1,四边形为直角梯形,,,,,为上一点,为的中点,且,,现将梯形沿折叠(如图2),使平面平面.(1)求证:平面平面.(2)能否在边上找到一点(端点除外)使平面与平面所成角的余弦值为?若存在,试确定点的位置,若不存在,请说明理由.21.(12分)已知双曲线的左、右焦点分别为,,动点M满足(1)求动点M的轨迹方程;(2)若动点M在双曲线C上,设双曲线C的左支上有两个不同的点P,Q,点,且,直线NQ与双曲线C交于另一点B.证明:动直线PB经过定点22.(10分)已知等比数列满足,.(1)求数列的前8项和;(2)求数列的前项积.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据所求直线垂直于直线,设其方程为,然后将点代入求解.【详解】因为所求直线垂直于直线,所以设其方程为,又因为直线过点,所以,解得所以直线方程为:,故选:A.2、A【解析】根据,利用递推公式求得数列的通项公式.再根据新定义的意义,代入解不等式即可求得实数的取值范围.【详解】因为所以当时,两式相减可得,即,所以数列是以公比的等比数列当时,所以,则由“差半递增”数列的定义可知化简可得解不等式可得即实数的取值范围为故选:A.3、C【解析】利用等比中项的性质可求得的值,再由可求得结果.【详解】由等比中项的性质可得,解得,又,,故选:C.4、C【解析】每一个选项根据求导公式及法则来运算即可判断.【详解】对于A,,正确;对于B,,正确;对于C,,不正确;对于D,,正确.故选:C5、D【解析】先分别观察给出正方体的个数为:1,,,,总结一般性的规律,将一般性的数列转化为特殊的数列再求解【详解】解:根据前面四个发现规律:,,,,,累加得:,,故选:【点睛】本题主要考查了归纳推理,属于中档题6、B【解析】根据给定条件利用空间向量垂直的坐标表示计算作答.详解】因,且,则有,解得,所以实数的值为3.故选:B7、B【解析】根据等比数列前项和的性质进行求解即可.【详解】因为是等比数列,所以成等比数列,即成等比数列,显然,故选:B8、C【解析】由角平分线的性质可得,结合已知条件即可求双曲线的离心率.【详解】由题设,易知:,由知:,即,整理得:.故选:C9、A【解析】先求出等距抽样的组距,从而得到被抽到的是,从而求出答案.【详解】120件商品中抽8件,故,因为含有编号66的商品被抽到,故其他能被抽到的是,当时,,其他三个选项均不合要求,故选:A10、A【解析】根据斜率公式求得直线的斜率,得到,即可求解.【详解】设直线的倾斜角为,由斜率公式,可得,即,因为,所以,即此直线的倾斜角为.故选:A.11、B【解析】作出给定不等式表示的平面区域,再借助几何意义即可求出的最大值.【详解】画出不等式组表示的平面区域,如图中阴影,其中,,目标函数,即表示斜率为2,纵截距为的平行直线系,作出直线,平移直线到直线,使其过点A时,的纵截距最小,最大,则,所以的最大值为1.故选:B12、A【解析】直接由等差中项得到结果.详解】由得.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】结合点差法求得正确答案.【详解】椭圆方程可化为,设是椭圆上的点,是弦的中点,则,两式相减并化简得,即,所以弦所在直线方程为,即.故答案为:14、【解析】根据条件可知以为直径的圆在椭圆的内部,可得,再根据,即可求得离心率的取值范围.【详解】根据条件可知,以为直径的圆与椭圆没有交点,即,即,,即.故填:.【点睛】本题考查椭圆离心率的取值范围,求椭圆离心率是常考题型,涉及的方法包含1.根据直接求,2.根据条件建立关于的齐次方程求解,3.根据几何关系找到的等量关系求解.15、【解析】参变分离后研究函数单调性及极值,结合与相邻的整数点的函数值大小关系求出实数a的范围.【详解】整理为:,即函数在上方及线上存在两个整数点,,故显然在上单调递增,在上单调递减,且与相邻的整数点的函数值为:,,,,显然有,要恰有两个整数点,则为0和1,此时,解得:,如图故答案为:16、【解析】由题意知:从4为同学中选出2位进行排列,即可写出表示方式.【详解】1、从4位同学选出2位同学,2、把所选出的2位同学任意安排为正、副班长,∴选法数为.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),(2)列联表见解析,没有【解析】(1)根据平均数的定义求平均数,由于前2组的频率和恰好为,从而可求出中位数,(2)根据频率分布表结合已知的数据计算完成列联表,然后计算χ2公式计算χ2,再根据临界值表比较可得结论【小问1详解】以每组的中间值代表本组的消费金额,则网民消费金额的平均值为0.频率直方图中第一组、第二组的频率之和为,中位数;【小问2详解】把下表中空格里的数填上,得列联表如下;男女合计252550203050合计4555100计算,所以没有的把握认为网购消费与性别有关.18、(1);(2)证明见解析.【解析】(1)运用代入法直接求解即可;(2)设出直线的方程与抛物线方程联立,结合一元二次方程根与系数关系、平面向量数量积的坐标表示公式进行求解即可.【小问1详解】由已知可得:;【小问2详解】的斜率不为设,,∴OA→⋅因为直线与抛物线交于两点两点在轴的两侧,所以,即过定点.【点睛】关键点睛:运用一元二次方程根与系数关系是解题的关键.19、(1)(2)【解析】(1)利用正弦定理化简,通过两角和与差的三角函数求出,即可得到结果(2)利用三角形的面积求出,通过由余弦定理求解即可【详解】解:(1)因为bcosA=(2c+a)cos(π﹣B),所以sinBcosA=(﹣2sinC﹣sinA)cosB所以sin(A+B)=﹣2sinCcosB∴cosB=﹣∴B=(2)由=得ac=4由余弦定理得b2=a2+c2+ac=(a+c)2+ac=16∴a+c=2【点睛】本题主要考查了利用正、余弦定理及三角形的面积公式解三角形问题,其中在解有关三角形的题目时,要有意识地考虑用哪个定理更合适,或是两个定理都要用.一般地,如果式子中含有角的余弦或边的二次式时,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到20、(1)证明见解析.(2)存在点,为线段中点【解析】(1)根据线面垂直的判定定理和面面垂直的判定定理,即可证得平面平面;(2)以为坐标原点建立如图所示的空间直角坐标系,求得平面和平面的法向量,利用向量的夹角公式,即可求解.【详解】(1)在直角梯形中,作于于,连接,则,,则,,则,在直角中,可得,则,所以,故,且折叠后与位置关系不变.又因为平面平面,且平面平面,所以平面,因为平面,所以平面平面.(2)在中,由,为的中点,可得.又因为平面平面,且平面平面,所以平面,则以为坐标原点建立如图所示的空间直角坐标系,则,,,则,,设平面的法向量为,则,令,可得平面的法向量为,假设存在点使平面与平面所成角的余弦值为,且(),∵,∴,故,又,∴,又由,设平面的法向量为,可得,令得,∴,解得,因此存在点且为线段中点时使平面与平面所成角的余弦值为.本题考查了面面垂直的判定与证明,以及空间角的求解及应用,意在考查学生的空间想象能力和逻辑推理能力,解答中熟记线面位置关系的判定定理和性质定理,通过严密推理是线面位置关系判定的关键,同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.21、(1)(2)证明见解析【解析】(1)根据双曲线的定义求得的值得双曲线方程;(2)确定垂直于轴,设直线BP的方程为,设,,则,直线方程代入双曲线方程,由相交求得范围,由韦达定理,利用N、B、Q三点共线,且NQ斜率存在,由斜率相等得出的关系,代入韦达定理的结论可求得的值,从而得直线BP所过定点【小问1详解】因为,所以,动点M的轨迹是以点、为左、右焦点的双曲线的左支,则,可得,,所以,点M的轨迹方程为;【小问2详解】证明:∵,∴直线PQ垂直于x轴,易知,直线BP的斜
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度林权流转与林业资源保护合作合同4篇
- 上海市闵行区24校2025届中考生物押题卷含解析
- 二零二五版LED显示屏内容管理系统集成合同3篇
- 二零二五版房地产股权托管与风险控制合同3篇
- 2024陶幻离婚后共同子女课外活动费用分担协议3篇
- 2025年度瓶装纯净水生产加工合作协议4篇
- 2025年度5G通信技术研究人员聘用协议书4篇
- 2025年绿植市场绿植销售与售后服务合同3篇
- 二零二四年内墙抹灰班组高效施工劳务分包协议6篇
- 2025年度新能源储能技术合作开发与应用合同4篇
- 2025年河北供水有限责任公司招聘笔试参考题库含答案解析
- Unit3 Sports and fitness Discovering Useful Structures 说课稿-2024-2025学年高中英语人教版(2019)必修第一册
- 农发行案防知识培训课件
- 社区医疗抗菌药物分级管理方案
- NB/T 11536-2024煤矿带压开采底板井下注浆加固改造技术规范
- 2024年九年级上德育工作总结
- 2024年储罐呼吸阀项目可行性研究报告
- 除氧器出水溶解氧不合格的原因有哪些
- 冲击式机组水轮机安装概述与流程
- 新加坡SM2数学试题
- 毕业论文-水利水电工程质量管理
评论
0/150
提交评论