北京三中2025届数学高二上期末调研模拟试题含解析_第1页
北京三中2025届数学高二上期末调研模拟试题含解析_第2页
北京三中2025届数学高二上期末调研模拟试题含解析_第3页
北京三中2025届数学高二上期末调研模拟试题含解析_第4页
北京三中2025届数学高二上期末调研模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京三中2025届数学高二上期末调研模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知点在平面α上,其法向量,则下列点不在平面α上的是()A. B.C. D.2.椭圆C:的焦点在x轴上,其离心率为则椭圆C的长轴长为()A.2 B.C.4 D.83.的展开式中,常数项为()A. B.C. D.4.已知函数(其中)的部分图像如图所示,则函数的解析式为()A. B.C. D.5.抛物线的准线方程是,则实数的值为()A. B.C.8 D.6.已知为偶函数,且,则___________.7.给出下列四个说法,其中正确的是A.命题“若,则”的否命题是“若,则”B.“”是“双曲线的离心率大于”的充要条件C.命题“,”的否定是“,”D.命题“在中,若,则是锐角三角形”的逆否命题是假命题8.五行学说是中华民族创造的哲学思想.古代先民认为,天下万物皆由五种元素组成,分别是金、木、水、火、土,彼此之间存在如图所示的相生相克关系.若从金、木、水、火、土五种元素中任取两种,则这两种元素恰是相生关系的概率是()A. B.C. D.9.在某市第一次全民核酸检测中,某中学派出了8名青年教师参与志愿者活动,分别派往2个核酸检测点,每个检测点需4名志愿者,其中志愿者甲与乙要求在同一组,志愿者丙与丁也要求在同一组,则这8名志愿者派遣方法种数为()A.20 B.14C.12 D.610.已知是椭圆上的一点,则点到两焦点的距离之和是()A.6 B.9C.14 D.1011.甲组数据为:5,12,16,21,25,37,乙组数据为:1,6,14,18,38,39,则甲、乙的平均数、极差及中位数相同的是()A.极差 B.平均数C.中位数 D.都不相同12.一条光线从点射出,经轴反射后与圆相切,则反射光线所在直线的斜率为()A.或 B.或C.或 D.或二、填空题:本题共4小题,每小题5分,共20分。13.已知抛物线的焦点为,定点,若直线与抛物线相交于、两点(点在、中间),且与抛物线的准线交于点,若,则的长为______.14.已知椭圆的右顶点为A,上顶点为B,且直线l与椭圆交于C,D两点,若直线l直线AB,设直线AC,BD的斜率分别为,,则的值为___________.15.若方程表示的曲线是双曲线,则实数m的取值范围是___;该双曲线的焦距是___16.若圆心坐标为圆被直线截得的弦长为,则圆的半径为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(Ⅰ)讨论函数的极值点的个数(Ⅱ)若,,求的取值范围18.(12分)已知等差数列满足,.(1)求数列的通项公式;(2)设,求数列的前n项和.19.(12分)已知数列满足且.(1)证明数列是等比数列;(2)设数列满足,,求数列的通项公式.20.(12分)如图,四棱锥P-ABCD的底面ABCD是菱形,PA⊥AB,PA⊥AD,且E、F分别是AC、PB的中点(1)证明:EF∥平面PCD;(2)求证:平面PBD⊥平面PAC21.(12分)已知直线过点,且其倾斜角是直线的倾斜角的(1)求直线的方程;(2)若直线与直线平行,且点到直线的距离是,求直线的方程22.(10分)已知函数(1)求函数在点处的切线方程;(2)求函数的单调区间及极值

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据法向量的定义,利用向量垂直对四个选项一一验证即可.【详解】对于A:记,则.因为,所以点在平面α上对于B:记,则.因为,所以点在平面α上对于C:记,则.因为,所以点在平面α上对于D:记,则.因为,所以点不在平面α上.故选:D2、C【解析】根据椭圆的离心率,即可求出,进而求出长轴长.【详解】由椭圆的性质可知,椭圆的离心率为,则,即所以椭圆C的长轴长为故选:C.【点睛】本题主要考查了椭圆的几何性质,属于基础题.3、A【解析】写出展开式通项,令的指数为零,求出参数的值,代入通项计算即可得解.【详解】的展开式通项为,令,可得,因此,展开式中常数项为.故选:A.4、B【解析】根据题图有且,结合五点法求参数,即可得的解析式.【详解】由图知:且,则,所以,则,即,又,可得,,则,,又,即有.综上,.故选:B5、B【解析】化简方程为,求得抛物线的准线方程,列出方程,即可求解.【详解】由抛物线,可得,所以,所以抛物线的准线方程为,因为抛物线的准线方程为,所以,解得.故选:B.6、8【解析】由已知条件中的偶函数即可计算出结果,【详解】为偶函数,且,.故答案为:87、D【解析】A选项:否命题应该对条件结论同时否定,说法不正确;B选项:双曲线的离心率大于,解得,所以说法不正确;C选项:否定应该是:,,所以说法不正确;D选项:“在中,若,则是锐角三角形”是假命题,所以其逆否命题也为假命题,所以说法正确.【详解】命题“若,则”的否命题是“若,则”,所以A选项不正确;双曲线的离心率大于,即,解得,则“”是“双曲线的离心率大于”的充分不必要条件,所以B选项不正确;命题“,”的否定是“,”,所以C选项不正确;命题“在中,若,则是锐角三角形”,在中,若,可能,此时三角形不是锐角三角形,所以这是一个假命题,所以其逆否命题也是假命题,所以该选项说法正确.故选:D【点睛】此题考查四个命题关系,充分条件与必要条件,含有一个量词的命题的否定,关键在于弄清逻辑关系,正确求解.8、C【解析】先计算从金、木、水、火、土五种元素中任取两种的所有基本事件数,再计算其中两种元素恰是相生关系的基本事件数,利用古典概型概率公式,即得解【详解】由题意,从金、木、水、火、土五种元素中任取两种,共有(金,木),(金,水),(金,火),(金,土),(木,水),(木,火),(木土),(水,火),(水,土),(火,土),共10个基本事件,其中两种元素恰是相生关系包含(金,木),(木,土),(土,水),(水,火)(火,金)共5个基本事件,所以所求概率.故选:C9、B【解析】分(甲乙)、(丙丁)再同一组和不在同一组两种情况讨论,按照分类、分步计数原理计算可得;【详解】解:依题意甲乙丙丁四人再同一组,有种;(甲乙),(丙丁)不在同一组,先从其余4人选2人与甲乙作为一组,另外2人与丙丁作为一组,再安排到两个核酸检测点,则有种,综上可得一共有种安排方法,故选:B10、A【解析】根据椭圆的定义,可求得答案.【详解】由可知:,由是椭圆上的一点,则点到两焦点的距离之和为,故选:A11、B【解析】由平均数、极差及中位数的定义依次求解即可比较【详解】,,故甲、乙的平均数相同,甲、乙的极差分别为,,故不同,甲、乙的中位数分别为,,故不同,故选:12、D【解析】由光的反射原理知,反射光线的反向延长线必过点,设反射光线所在直线的斜率为,则反射光线所在直线方程为:,即:.又因为光线与圆相切,所以,,整理:,解得:,或,故选D考点:1、圆的标准方程;2、直线的方程;3、直线与圆的位置关系.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】分别过点、作、垂直于抛物线的准线于、,则,求出直线的方程,可求得抛物线的焦点的坐标,可得出抛物线的标准方程,再将直线的方程与抛物线的方程联立,求出点的纵坐标,利用抛物线的定义可求得线段的长.【详解】如图,分别过点、作、垂直于抛物线的准线于、,则,由得,所以,,又,所以,直线的方程为,所以,,则,则抛物线的方程为,设点的纵坐标为,由,得或,因为点在、之间,则,所以,.故答案为:.14、##0.25【解析】求出点A,B坐标,设出直线l的方程,联立直线l与椭圆方程,借助韦达定理即可计算作答.【详解】依题意,点,直线AB斜率为,因直线l直线AB,则设直线l方程为:,,由消去y并整理得:,,解得,于是有或,设,则,有,因此,,所以的值为.故答案:15、①.②.2【解析】由题意可得,由此可解得m的范围,进一步将方程化为标准方程即可求得焦距【详解】由所表示的曲线是双曲线,可知,解得,当时,方程可变为:,此时双曲线焦距为,当时,m不存在,不合题意;故双曲线的焦距:故答案为:;16、【解析】利用垂径定理计算即可.【详解】设圆的半径为,则,得.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)答案见解析;(Ⅱ).【解析】(Ⅰ)求得,分,和三种情况讨论,求得函数的单调性,结合极值的概念,即可求解;(Ⅱ)由不等式,转化为当时,不等式恒成立,设,利用导数求得函数的单调性与最值,即可求解.【详解】(Ⅰ)由题意,函数的定义域为,且,当时,令,解得,令,解得或,故在上单调递减,在,上单调递增,所以有一个极值点;当时,令,解得或,令,得,故在,上单调递减,在上单调递增,所以有一个极值点;当时,上单调递增,在上单调递减,所以没有极值点综上所述,当时,有个极值点;当时,没有极值点.(Ⅱ)由,即,可得,即当时,不等式恒成立,设,则设,则因为,所以,所以在上单调递增,所以,所以在上单调递减,在上单调递增,所以,所以所以的取值范围是.【点睛】对于利用导数研究不等式的恒成立问题的求解策略:1、通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;2、利用可分离变量,构造新函数,直接把问题转化为函数的最值问题3、根据恒成求解参数的取值时,一般涉及分类参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,通常要设出导数的零点,难度较大.18、(1);(2).【解析】(1)将条件化为基本量并解出,进而求得答案;(2)通过裂项法即可求出答案.【小问1详解】由,.得:解得:故.【小问2详解】当时,.所以时,.19、(1)证明见解析;(2).【解析】(1)根据题意可得,根据等比数列的定义,即可得证;(2)由(1)可得,可得,利用累加法即可求得数列的通项公式.【详解】(1)因为,所以,即,所以是首项为1公比为3的等比数列(2)由(1)可知,所以因为,所以……,,各式相加得:,又,所以,又当n=1时,满足上式,所以20、(1)证明见解析;(2)证明见解析.【解析】(1)连结,证明EF∥PD即可;(2)证明BD⊥平面PAC即可【小问1详解】连结,则是的中点,又是的中点,,又平面,面,平面【小问2详解】∵PA⊥AB,PA⊥AD,AB∩AD=A,AB、AD平面ABCD,∴PA⊥平面ABCD,∵BD平面ABCD,∴PA⊥BD,是菱形,,又,平面,又平面,∴平面平面﹒21、(1);(2)或【解析】(1)先求得直线的倾斜角,由此求得直线的倾斜角和斜率,进而求得直线的方程;(2)设出直线的方程,根据点到直线的距离列方程,由此求解出直线的方程【详解】解(1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论