数学单元测试:圆锥截线_第1页
数学单元测试:圆锥截线_第2页
数学单元测试:圆锥截线_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学必求其心得,业必贵于专精学必求其心得,业必贵于专精学必求其心得,业必贵于专精单元测试1。一条直线在平面上的正射影是。思路解析:要根据直线与平面的不同位置关系作出回答。当直线和平面垂直的时候,直线在平面内的射影是一个点;当直线和平面平行的时候,直线在平面内的射影是和该直线平行的一条直线.答案:一个点或和该直线平行的一条直线2.已知椭圆+上一点P到一个焦点的距离为3,那么点P到另一个焦点的距离为()A。2 B。3 C。5 D.7思路解析:椭圆上的点到两个焦点的距离之和为常数,就是长轴的两倍。答案:D3一动圆与已知圆O1:(x+3)2+y2=1外切,圆O2:(x-3)2+y2=81内切,试求动圆圆心的轨迹方程.思路分析:两圆相切时,圆心之间的距离与两圆的半径有关,可以找到动圆圆心满足的条件.解:两定圆的圆心和半径分别为O1(—3,0),r1=1;O2(3,0),r2=9.设动圆圆心为M(x,y),半径为R,则由题设条件可得|MO1|=1+R,|MO2|=9—R。∴|MO1|+|MO2|=10,由椭圆的定义知道M在以O1、O2为焦点的椭圆上,且a=5,c=3。∴b2=a2-c2=25-9=16。故动圆圆心的轨迹方程为=1。4。在空间中,取直线l为轴,直线l′与l相交于O点,其夹角为α,l′围绕l旋转得到以O为顶点,l′为母线的圆锥面.任取平面π,若它与轴l交角为β(π与l平行,记β=0),则当β>α时,平面π与圆锥的交线为椭圆。试利用Dandelin双球(这两个球位于圆锥的内部,一个位于平面π的上方,一个位于平面π的下方,并且与平面π及圆锥均相切)证明上述结论.思路解析:按椭圆的定义证明,即平面上到两点的距离之和为定值的点的轨迹是椭圆.证明:略。5。试证明以下结果:①如图,一个Dandelin球与圆锥面的交线为一个圆,并与圆锥的底面平行,记这个圆所在平面为π′;②如果平面π与平面π′的交线为m,在图3-1中椭圆上任取一点A,该Dandelin球与平面π的切点为F,则点A到点F的距离与点A到直线m的距离比是小于1的常数e。(称点F为这个椭圆的焦点,直线m为椭圆的准线,常数e为离心率

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论