下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
PAGEPAGE5其次讲测评(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.已知,则下列不等式成立的是()A.a<b B.C. D.<0.答案D2.若a∈R,且p=,q=a2-a+1,则()A.p≥q B.p>q C.p≤q D.p<q解析因为a∈R,所以p,q>0,且=(a2-a+1)(a2+a+1)=a4+a2+1≥1,所以q≥p.答案C3.(2024江西二模)求证,p=(x1-)2+(x2-)2+…+(xn-)2,q=(x1-a)2+(x2-a)2+…+(xn-a)2,若a≠,则肯定有()A.p>q B.p<qC.p,q的大小不定 D.以上都不对解析设f(x)=(x1-x)2+(x2-x)2+…+(xn-x)2,则f(x)=nx2-2(x1+x2+…+xn)x++…+.当x=时,f(x)取得最小值,即p<q,故选B.答案B4.对“a,b,c是不全相等的正数”,给出下列推断:①(a-b)2+(b-c)2+(c-a)2≠0;②a>b与a<b及a≠c中至少有一个成立;③a≠c,b≠c,a≠b不能同时成立,其中推断正确的个数为()A.0 B.1 C.2 D.3解析对于①,假设(a-b)2+(b-c)2+(c-a)2=0,这时a=b=c,与已知冲突,故(a-b)2+(b-c)2+(c-a)2≠0,故①正确;对于②,假设a>b与a<b及a≠c都不成立时,有a=b=c,与已知冲突,故a>b与a<b及a≠c中至少有一个成立,故②正确;对于③,明显不正确.答案C5.已知函数f(x)是R上的单调递增函数且为奇函数,数列{an}是等差数列,a3>0,则f(a1)+f(a3)+f(a5)的值()A.恒为正数 B.恒为负数C.恒为0 D.可正可负解析因为f(x)是R上的单调递增函数且为奇函数,且a3>0,所以f(a3)>f(0)=0,而a1+a5=2a3,所以a1+a5>0,则a1>-a5,于是f(a1)>f(-a5),即f(a1)>-f(a5),所以f(a1)+f(a5)>0,故f(a1)+f(a3)+f(a5)>0.答案A6.要使成立,a,b应满意的条件是()A.ab<0,且a>bB.ab>0,且a>bC.ab<0,且a<bD.ab>0,且a>b或ab<0,且a<b解析⇔a-b+3-3<a-b⇔,所以当ab>0时,有,即b<a;当ab<0时,有,即b>a.答案D7.设a,b,c∈R,且a,b,c不全相等,则不等式a3+b3+c3≥3abc成立的一个充要条件是()A.a,b,c全为正数 B.a,b,c全为非负实数C.a+b+c≥0 D.a+b+c>0解析a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-ac-bc)=(a+b+c)[(a-b)2+(b-c)2+(a-c)2],而a,b,c不全相等⇔(a-b)2+(b-c)2+(a-c)2>0.故a3+b3+c3-3abc≥0⇔a+b+c≥0.答案C8.设a,b,c,d∈R,若a+d=b+c,且|a-d|<|b-c|,则有()A.ad=bc B.ad<bcC.ad>bc D.ad≤bc解析|a-d|<|b-c|⇒(a-d)2<(b-c)2⇒a2+d2-2ad<b2+c2-2bc,因为a+d=b+c⇒(a+d)2=(b+c)2⇒a2+d2+2ad=b2+c2+2bc,所以-4ad<-4bc,所以ad>bc.答案C9.使不等式>1+成立的正整数a的最大值是()A.10 B.11 C.12 D.13解析用分析法可证当a=12时不等式成立,当a=13时不等式不成立.答案C10.已知a,b,c∈(0,+∞),若,则()A.c<a<b B.b<c<aC.a<b<c D.c<b<a解析由可得+1<+1<+1,即,所以a+b>b+c>c+a.由a+b>b+c可得a>c,由b+c>c+a可得b>a,于是有c<a<b.答案A11.设m>n,m,n∈N+,a=(lgx)m+(lgx)-m,b=(lgx)n+(lgx)-n,其中x>1,则()A.a>b B.a≥bC.a≤b D.a<b解析a-b=[(lgx)m-(lgx)n]-[(lgx)-n-(lgx)-m]=[(lgx)m-(lgx)n]-=(lgmx-lgnx)-=(lgmx-lgnx).因为x>1,所以lgx>0.当lgx=1时,a-b=0,所以a=b;当lgx>1时,a-b>0,所以a>b;当0<lgx<1时,a-b>0,所以a>b.综上,a≥b.答案B12.导学号26394041已知x,y>0,且xy-(x+y)=1,则()A.x+y≥2(+1) B.xy≤+1C.x+y≤(+1)2 D.xy≥+1解析由xy-(x+y)=1可得xy=1+x+y≥1+2,即()2-2-1≥0,所以+1,则xy≥(+1)2,解除B和D;因为xy=x+y+1≤,解得x+y≥2(+1).故选A.答案A二、填空题(本大题共4小题,每小题5分,共20分)13.当x>1时,x3与x2-x+1的大小关系是.
解析因为x3-(x2-x+1)=x3-x2+x-1=x2(x-1)+(x-1)=(x-1)(x2+1),且x>1,所以(x-1)(x2+1)>0.因此x3-(x2-x+1)>0,即x3>x2-x+1.答案x3>x2-x+114.设0<m<n<a<b,函数y=f(x)在R上是减函数,下列四个数f,f,f,f的大小依次是.
解析∵<1<,y=f(x)在R上是减函数,∴f>f>f>f.答案f>f>f>f15.若a+b>a+b,则a,b应满意的条件是.
解析因为a+b>a+b⇔()2()>0⇔a≥0,b≥0,且a≠b.答案a≥0,b≥0,且a≠b16.设a,b为正数,α为锐角,M=,N=()2,则M,N的大小关系是.
解析因为a>0,b>0,α为锐角,所以N=ab+2+2,M=ab+≥ab+2当且仅当时,等号成立.又sin2α≤1,所以M≥ab+2+2=N,当且仅当a=b,且α=时,等号成立.答案M≥N三、解答题(本大题共6小题,共70分)17.(本小题满分10分)设a>b>0,求证.证明因为a>b>0,所以>0,>0.又=1+>1,故.18.(本小题满分12分)设a,b>0,a≠b,求证>a+b.证明-(a+b)==(a3-b3)=,因为a,b>0,a≠b,所以a+b>0,(a-b)2>0,a2+ab+b2>0,a2b2>0,所以>0.故>a+b.19.(本小题满分12分)已知a2+b2=1,x2+y2=1,试用分析法证明ax+by≤1.证明要证ax+by≤1成立,只需证1-(ax+by)≥0,只需证2-2ax-2by≥0.因为a2+b2=1,x2+y2=1,只需证a2+b2+x2+y2-2ax-2by≥0,即证(a-x)2+(b-y)2≥0,明显成立.所以ax+by≤1.20.(本小题满分12分)设a,b,c,d是正数,试证明下列三个不等式:①a+b<c+d;②(a+b)(c+d)<ab+cd;③(a+b)cd<ab(c+d)中至少有一个不正确.证明假设不等式①②③都正确.因为a,b,c,d都是正数,所以①②两不等式相乘并整理,得(a+b)2<ab+cd.④由③式,得(a+b)cd<ab(c+d)≤·(c+d).又a+b>0,(a+b)(c+d)<ab+cd,所以4cd<ab+cd.所以3cd<ab,即cd<.由④式,得(a+b)2<,即a2+b2<-ab,与平方和为正数冲突.故假设不成立,即不等式①②③中至少有一个不正确.21.导学号26394042(本小题满分12分)已知正数a,b,c满意a+b+c=6,求证.证明由已知及三个正数的算术-几何平均不等式可得≥3==≥(当且仅当a=b=c=2时,等号成立),故原不等式成立.22.导学号26394043(本小题满分12分)设Sn为数列{an}的前n项和,Sn=nan-3n(n-1)(n∈N+),且a2=11.(1)求a1的值;(2)求数列{an}的前n项和Sn;(3)设数列{bn}满意bn=,求证b1+b2+…+bn<.(1)解当n=2时,由Sn=nan-3n(n-1),得a1+a2=2a2-3×2(2-1),又a2=11,可得a1=5.(2)解当n≥2时,由an=Sn-Sn-1,得an
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《兒童視力保健》课件
- 《抗菌药物概论课件》课件
- 蜂产品课件蜂产品中抗生素残留现状及检测
- 保险基础知识课件-保险的性质、功能及作用
- 奥数鸡兔同笼课件
- 地理信息系统的应用课件
- 曲线积分与曲面积分习题课课件
- 2.1 立在地球边上放号 课件(共37张)
- 植物提取物生产线项目可行性研究报告模板-立项备案
- 2024年全国爱耳日活动方案(34篇)
- 消防管道施工合同
- 大学生计算与信息化素养-北京林业大学中国大学mooc课后章节答案期末考试题库2023年
- 2023年中国社会科学院外国文学研究所专业技术人员招聘3人(共500题含答案解析)笔试历年难、易错考点试题含答案附详解
- 2023年广东石油化工学院公开招聘部分新机制合同工20名高频考点题库(共500题含答案解析)模拟练习试卷
- 2023年国开大学期末考复习题-3987《Web开发基础》
- 《骆驼祥子》1-24章每章练习题及答案
- 《伊利乳业集团盈利能力研究》文献综述3000字
- 货车安全隐患排查表
- 《战略三环 规划 解码 执行》读书笔记思维导图PPT模板下载
- 减盐防控高血压培训课件
- 2023年百一测评-房地产企业岗位招聘工程副总经理笔试试题
评论
0/150
提交评论