版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届浙江省杭州地区六校数学高一上期末综合测试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数(其中)的图象如下图所示,则的图象是()A. B.C. D.2.一个扇形的弧长为6,面积为6,则这个扇形的圆心角是()A.1 B.2C.3 D.43.若关于的不等式在恒成立,则实数的取值范围是()A. B.C. D.4.某工厂生产的30个零件编号为01,02,…,19,30,现利用如下随机数表从中抽取5个进行检测.若从表中第1行第5列的数字开始,从左往右依次读取数字,则抽取的第5个零件编号为()3457078636046896082323457889078442125331253007328632211834297864540732524206443812234356773578905642A. B.C. D.5.下列区间是函数的单调递减区间的是()A. B.C. D.6.在中,,则等于A. B.C. D.7.函数f(x)=2x-5零点在下列哪个区间内().A.(0,1) B.(1,2)C.(2,3) D.(3,4)8.对于函数,下列说法正确的是A.函数图象关于点对称B.函数图象关于直线对称C.将它的图象向左平移个单位,得到的图象D.将它的图象上各点的横坐标缩小为原来的倍,得到的图象9.“”是“”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件10.某时钟的秒针端点A到中心点O的距离为5cm,秒针绕点O匀速旋转,当时间:t=0时,点A与钟面上标12的点B重合,当t∈[0,60],A,B两点间的距离为d(单位:A.5sintC.5sinπt二、填空题:本大题共6小题,每小题5分,共30分。11.若角的终边与以原点为圆心的单位圆交于点,则的值为___________.12.已知扇形弧长为20cm,圆心角为,则该扇形的面积为___________.13.已知扇形的面积为4,圆心角为2弧度,则该扇形的弧长为_________14.若函数在区间上为减函数,则实数的取值范围为________15.已知正实数满足,则当__________时,的最小值是__________16.若函数在区间上没有最值,则的取值范围是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知.(Ⅰ)若,求的值;(Ⅱ)若为第三象限角,且,求的值.18.某班级欲在半径为1米的圆形展板上做班级宣传,设计方案如下:用四根不计宽度的铜条将圆形展板分成如图所示的形状,其中正方形ABCD的中心在展板圆心,正方形内部用宣传画装饰,若铜条价格为10元/米,宣传画价格为20元/平方米,展板所需总费用为铜条的费用与宣传画的费用之和(1)设,将展板所需总费用表示成的函数;(2)若班级预算为100元,试问上述设计方案是否会超出班级预算?19.已知函数.(1)当,为奇函数时,求b的值;(2)如果为R上的单调函数,请写出一组符合条件的a,b值;(3)若,,且的最小值为2,求的最小值.20.国家质量监督检验检疫局于2004年5月31日发布了新的《车辆驾驶人员血液、呼气酒精含量阀值与检验》国家标准.新标准规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升,小于80毫克/百毫升为饮酒驾车,血液中的酒精含量大于或等于80毫克/百毫升为醉酒驾车.经过反复试验,喝一瓶啤酒后酒精在人体血液中的变化规律的“散点图”如下:该函数模型如下:根据上述条件,回答以下问题:(1)试计算喝1瓶啤酒多少小时血液中的酒精含量达到最大值?最大值是多少?(2)试计算喝一瓶啤酒多少小时后才可以驾车?(时间以整小时计算)(参考数据:)21.已知1与2是三次函数的两个零点.(1)求的值;(2)求不等式的解集.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】根据二次函数图象上特殊点的正负性,结合指数型函数的性质进行判断即可.【详解】解:由图象可知:,因,所以由可得:,由可得:,由可得:,因此有,所以函数是减函数,,所以选项A符合,故选:A2、C【解析】根据扇形的弧长公式和扇形的面积公式,列出方程组,即可求解,得到答案.【详解】设扇形所在圆的半径为,由扇形的弧长为6,面积为6,可得,解得,即扇形的圆心角为.故选C.【点睛】本题主要考查了扇形的弧长公式,以及扇形的面积公式的应用,其中解答中熟练应用扇形的弧长公式和扇形的面积公式,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.3、A【解析】转化为当时,函数的图象不在的图象的上方,根据图象列式可解得结果.【详解】由题意知关于的不等式在恒成立,所以当时,函数的图象不在的图象的上方,由图可知,解得.故选:A【点睛】关键点点睛:利用函数的图象与函数的图象求解是解题关键.4、C【解析】根据随机数表依次进行选取即可【详解】解:根据随机数的定义,1行的第5列数字开始由左向右依次选取两个数字,大于30的数字舍去,重复的舍去,取到数字依次为07,04,08,23,12,则抽取的第5个零件编号为12.故选:【点睛】本题考查简单随机抽样的应用,同时考查对随机数表法的理解和辨析5、D【解析】取,得到,对比选项得到答案.【详解】,取,,解得,,当时,D选项满足.故选:D.6、C【解析】分析:利用两角和的正切公式,求出的三角函数值,求出的大小,然后求出的值即可详解:由,则,因为位三角形的内角,所以,所以,故选C点睛:本题主要考查了两角和的正切函数的应用,解答中注意公式的灵活运用以及三角形内角定理的应用,着重考查了推理与计算能力7、C【解析】利用零点存在定理进行求解.【详解】因为单调递增,且;因为,所以区间内必有一个零点;故选:C.【点睛】本题主要考查零点所在区间的判断,判断的依据是零点存在定理,侧重考查数学运算的核心素养.8、B【解析】,所以点不是对称中心,对称中心需要满足整体角等于,,A错.,所以直线是对称轴,对称轴需要满足整体角等于,,B对.将函数向左平移个单位,得到的图像,C错.将它的图像上各点的横坐标缩小为原来的倍,得到的图像,D错,选B.(1)对于和来说,对称中心与零点相联系,对称轴与最值点联系.的图象有无穷多条对称轴,可由方程解出;它还有无穷多个对称中心,它们是图象与轴的交点,可由,解得,即其对称中心为(2)三角函数图像平移:路径①:先向左(φ>0)或向右(φ<0)平移个单位长度,得到函数y=sin(x+φ)的图象;然后使曲线上各点的横坐标变为原来的倍(纵坐标不变),得到函数y=sin(ωx+φ)的图象;最后把曲线上各点的纵坐标变为原来的A(横坐标不变),这时的曲线就是y=Asin(ωx+φ)的图象路径②:先将曲线上各点的横坐标变为原来的倍(纵坐标不变),得到函数y=sinωx的图象;然后把曲线向左(φ>0)或向右(φ<0)平移个单位长度,得到函数y=sin(ωx+φ)的图象;最后把曲线上各点的纵坐标变为原来的A倍(横坐标不变),这时的曲线就是y=Asin(ωx+φ)的图象9、B【解析】根据充分条件、必要条件的概念判断即可.【详解】若,则成立,即必要性成立,反之若,则不成立,所以“”是“”的必要不充分条件.故选:B.10、D【解析】由题知圆心角为tπ30,过O作AB的垂线,通过计算可得d【详解】由题知,圆心角为tπ30,过O作AB的垂线,则故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、##【解析】直接根据三角函数定义求解即可.【详解】解:因为角的终边与以原点为圆心的单位圆交于点,所以根据三角函数单位圆的定义得故答案为:12、【解析】求出扇形的半径后,利用扇形的面积公式可求得结果.【详解】由已知得弧长,,所以该扇形半径,所以该扇形的面积.故答案为:13、4【解析】设扇形半径为,弧长为,则,解得考点:角的概念,弧度的概念14、【解析】分类讨论,时根据二次函数的性质求解【详解】时,满足题意;时,,解得,综上,故答案为:15、①.②.6【解析】利用基本不等式可知,当且仅当“”时取等号.而运用基本不等式后,结合二次函数的性质可知恰在时取得最小值,由此得解.【详解】解:由题意可知:,即,当且仅当“”时取等号,,当且仅当“”时取等号.故答案为:,6.【点睛】本题考查基本不等式的应用,同时也考查了配方法及二次函数的图像及性质,属于基础题.16、【解析】根据正弦函数的图像与性质,可求得取最值时的自变量值,由在区间上没有最值可知,进而可知或,解不等式并取的值,即可确定的取值范围.【详解】函数,由正弦函数的图像与性质可知,当取得最值时满足,解得,由题意可知,在区间上没有最值,则,,所以或,因为,解得或,当时,代入可得或,当时,代入可得或,当时,代入可得或,此时无解.综上可得或,即的取值范围为.故答案为:.【点睛】本题考查了正弦函数的图像与性质应用,由三角函数的最值情况求参数,注意解不等式时的特殊值取法,属于难题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ).【解析】(Ⅰ)由诱导公式化简得,代入即可得解;(Ⅱ)由诱导公式可得,再由同角三角函数的平方关系可得,代入即可得解.【详解】(Ⅰ)由于,又,所以.(Ⅱ)因为,所以.又因为第三象限角,所以,所以.18、(1);(2)上述设计方案是不会超出班级预算【解析】(1)过点O作,垂足为H,用表示出OH和PH,从而可得铜条长度和正方形的面积,进而得出函数式;(2)利用同角三角函数的关系和二次函数的性质求出预算的最大值即可得出结论【详解】(1)过点O作,垂足为H,则,,正方形ABCD的中心在展板圆心,铜条长为相等,每根铜条长,,展板所需总费用为(2),当时等号成立.上述设计方案是不会超出班级预算【点睛】本题考查了函数应用,三角函数恒等变换与求值,属于中档题19、(1)(2),(答案不唯一,满足即可)(3)【解析】(1)当时,根据奇函数的定义,可得,化简整理,即可求出结果;(2)由函数和函数在上的单调递性,可知,即可满足题意,由此写出一组即可;(3)令,则,然后再根据基本不等式和已知条件,可得,再根据基本不等式即可求出结果.【小问1详解】解:当时,,因为是奇函数,所以,即,得,可得;【小问2详解】解:当,时,此时函数为增函数.(答案不唯一,满足即可)检验:当和时,,,均是上的单调递增函数,所以此时是上的单调递增函数,满足题意;【小问3详解】解:令,则,所以,即,当且仅当,即时等号成立,所以,由题意,,所以.由,当且仅当时等号成立,由解得,所以.20、(1)喝1瓶啤酒后1.5小时血液中的酒精含量达到最大值53毫克/百毫升;(2)喝1瓶啤酒后需6小时后才可以驾车.【解析】(1)由图可知,当函数取得最大值时,,此时,当,即时,函数取得最大值为.故
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026上半年天津事业单位统考西青区招聘47人笔试备考试题及答案解析
- 2026年闽北职业技术学院单招综合素质考试备考题库含详细答案解析
- 2026年广东机电职业技术学院单招职业技能考试模拟试题含详细答案解析
- 2026安徽淮北相山区人民医院招聘护士3人笔试备考题库及答案解析
- 2026广东中山市中等专业学校临聘教师招聘3人笔试备考试题及答案解析
- 2026年成都艺术职业大学单招职业技能考试备考试题含详细答案解析
- 2026广西柳州市消防救援局面向社会招录政府专职消防员91人笔试备考题库及答案解析
- 2026年蚌埠新城数智科技有限公司招聘工作人员3名笔试备考试题及答案解析
- 2026年江西航空职业技术学院单招综合素质考试备考试题含详细答案解析
- 2026年郑州城市职业学院单招职业技能考试备考题库含详细答案解析
- 医学人文关怀培训课件
- 《传感器与检测技术》课件-热电阻测温传感器
- 2025年小学三年级语文单元测试模拟卷(含答案)
- 2026年汉中职业技术学院单招职业技能测试必刷测试卷必考题
- 中国的气候第三课时课件-八年级地理上学期湘教版
- 2025年国考航空运输岗结构化面试情景模拟题经典案例30例
- M9000会议管理系统 操作指导
- 突发性耳聋病例分析与诊疗
- 2025年新高考1卷(新课标Ⅰ卷)英语试卷(含答案解析)+听力音频+听力原文
- 三年级语文童话、寓言类文章阅读专项训练(含答案-适合各版本教材)
- 语文七年级下字帖打印版
评论
0/150
提交评论