版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省黄冈八模2025届高二数学第一学期期末统考模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知命题p:,,则命题p的否定为()A., B.,C., D.,2.设,,则与的等比中项为()A. B.C. D.3.已知离散型随机变量X的分布列如下:X123P则数学期望()A. B.C.1 D.24.已知A,B,C,D是同一球面上的四个点,其中是正三角形,平面,,则该球的表面积为()A. B.C. D.5.命题:,否定是()A., B.,C., D.,6.已知抛物线,,点在抛物线上,记点到直线的距离为,则的最小值是()A.5 B.6C.7 D.87.已知是抛物线上的点,F是抛物线C的焦点,若,则()A1011 B.2020C.2021 D.20228.下列说法正确的个数有()(ⅰ)命题“若,则”的否命题为:“若,则”;(ⅱ)“,”的否定为“,使得”;(ⅲ)命题“若,则有实根”为真命题;(ⅳ)命题“若,则”的否命题为真命题;A.1个 B.2个C.3个 D.4个9.已知双曲线:的左、右焦点分别为,,且,点是的右支上一点,且,,则双曲线的方程为()A. B.C. D.10.若,则与的大小关系是()A. B.C. D.不能确定11.已知数列中,,(),则等于()A. B.C. D.212.在等差数列中,若的值是A.15 B.16C.17 D.18二、填空题:本题共4小题,每小题5分,共20分。13.已知定义在实数集R上的函数f(x)满足f(1)=3,且f(x)的导数在R上恒有<2(x∈R),则不等式f(x)<2x+1的解集为______.14.过点的直线与抛物线相交于,两点,,则直线的方程为______.15.秦九韶出生于普州(今资阳市安岳县),是我国南宋时期伟大的数学家,他创立的秦九韶算法历来为人称道,其本质是将一个次多项式写成个一次式相组合的形式,如可将写成,由此可得__________16.抛物线的准线方程为_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(1)证明;(2)设,证明:若一定有零点,并判断零点的个数18.(12分)已知是等差数列,,.(1)求的通项公式;(2)设的前项和,求的值.19.(12分)已知函数(1)当时,求的极值;(2)讨论的单调性20.(12分)已知椭圆的中心在原点,对称轴为坐标轴且焦点在轴上,抛物线:,若抛物线的焦点在椭圆上,且椭圆的离心率为.(1)求椭圆的方程;(2)已知斜率存在且不为零的直线满足:与椭圆相交于不同两点、,与直线相交于点.若椭圆上一动点满足:,,且存在点,使得恒为定值,求的值.21.(12分)已知分别是椭圆的左、右焦点,点是椭圆上的一点,且的面积为1.(1)求椭圆的短轴长;(2)过原点的直线与椭圆交于两点,点是椭圆上的一点,若为等边三角形,求的取值范围.22.(10分)已知椭圆过点,离心率为.(1)求椭圆的方程;(2)过点作直线,与直线和椭圆分别交于两点,(与不重合).判断以为直径的圆是否过定点,如果过定点,求出定点坐标;如果不过定点,说明理由.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据全称命题与存在性命题的关系,准确改写,即可求解.【详解】根据全称命题与存在性命题的关系可得:命题“p:,”的否定式为“,”.故选:D.2、C【解析】利用等比中项的定义可求得结果.【详解】由题意可知,与的等比中项为.故选:C.3、D【解析】利用已知条件,结合期望公式求解即可【详解】解:由题意可知:故选:D4、C【解析】由题意画出几何体的图形,把、、、扩展为三棱柱,上下底面中心连线的中点与的距离为球的半径,由此能求出球的表面积【详解】把、、、扩展为三棱柱,上下底面中心连线的中点与的距离为球的半径,,,是正三角形,,,球的表面积为故选:C5、D【解析】根据给定条件利用全称量词命题的否定是存在量词命题直接写出作答.【详解】命题:,是全称量词命题,其否定是存在量词命题,所以命题:,的否定是:,.故选:D6、D【解析】先求出抛物线的焦点和准线,利用抛物线的定义将转化为的距离,即可求解.【详解】由已知得抛物线的焦点为,准线方程为,设点到准线的距离为,则,则由抛物线的定义可知∵,当点、、三点共线时等号成立,∴,故选:.7、C【解析】结合向量坐标运算以及抛物线的定义求得正确答案.【详解】设,因为是抛物线上的点,F是抛物线C的焦点,所以,准线为:,因此,所以,即,由抛物线的定义可得,所以故选:C8、B【解析】根据四种命题的结构特征可判断(ⅰ)(ⅳ)的正误,根据全称命题的否定形式可判断(ⅱ)的正误,根据判别式的正误可判断(ⅲ)的正误.【详解】命题“若,则”的否命题”为“若,则”,故(ⅰ)错误.“,”的否定为“,使得”,故(ⅱ)正确,当时,,故有实根,故(ⅲ)正确,“若,则”的否命题为“若,则”,取,则,故命题若,则为假命题,故(ⅳ)错误.故选:B9、B【解析】画出图形,利用已知条件转化求解,关系,利用,解得,即可得到双曲线的方程【详解】由题意双曲线的图形如图,连接与轴交于点,设,,因为,所以,因为,所以,则,因为点是的右支上一点,所以,所以,则,因为,所以,,由勾股定理可得:,即,解得,则,所以双曲线的方程为:故选:B10、B【解析】由题知,进而研究的符号即可得答案.详解】解:,所以,即.故选:B11、D【解析】由已知条件可得,,…,即是周期为3的数列,即可求.【详解】由题设,知:,,,…,∴是周期为3的数列,而的余数为1,∴.故选:D.12、C【解析】由已知直接利用等差数列的性质求解【详解】在等差数列{an}中,由a1+a2+a3=3,得3a2=3,即a2=1,又a5=9,∴a8=2a5-a2=18-1=17故选C【点睛】本题考查等差数列的通项公式,考查等差数列的性质,是基础题二、填空题:本题共4小题,每小题5分,共20分。13、【解析】构造函数g(x)=f(x)-2x-1,则原不等式可化为.利用导数判断出g(x)在R上为减函数,直接利用单调性解不等式即可【详解】令g(x)=f(x)-2x-1,则g(1)=f(1)-2-1=0.所以原不等式可化为.因为,所以g(x)在R上为减函数.由解得:x>1.故答案为:.14、##【解析】根据抛物线方程可得焦点坐标,进而点P为抛物线的焦点,设,利用抛物线的定义可得,有轴,即可得出结果.【详解】由题意知,抛物线的焦点坐标,又,所以点P为抛物线的焦点,设,由,由抛物线的定义得,解得,所以AB垂直与x轴,所以直线AB的方程为:.故答案为:15、【解析】利用代入法进行求解即可.【详解】故答案为:16、【解析】由抛物线的标准方程为x2=y,得抛物线是焦点在y轴正半轴的抛物线,2p=1,∴其准线方程是y=,故答案为三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)证明见解析,1个零点.【解析】(1)求导同分化简,构造新函数判断导数正负即可;(2)令g(x)=0,化简方程,将问题转化为讨论方程解的个数问题.【小问1详解】,设,则,时,递减,时,递增,而,所以时,,所以;小问2详解】有零点,则有解,即有解,又,则只要,因为,方程可以化为,现在证明有解,令,则,可知在递减,在递增,所以,因为,所以,在内恒有,而在递增,当x=时,h()=,故根据零点存在性定理知在存在唯一零点.所以有且只有一个零点,所以有零点,有一个零点【点睛】本题关键是是将方程零点问题转化为方程解的问题,通过讨论单调性和最值(极值)的正负即可判断零点的有无和个数.18、(1);(2).【解析】(1)设等差数列的公差为,利用题中等式建立、的方程组,求出、的值,然后根据等差数列的通项公式求出数列的通项公式;(2)利用等差数列前项和公式求出,然后由求出的值.【详解】(1)设等差数列的公差为,则,解得,,数列的通项为;(2)数列的前项和,由,化简得,即,.【点睛】本题考查等差数列的通项公式的求解,考查等差数列的前项和公式,常用的方法就是利用首项和公差建立方程组求解,考查运算求解能力,属于中等题.19、(1)极小值为,无极大值(2)答案见解析【解析】(1)求出导函数,由得增区间,得减区间,从而得极值;(2)求出导函数,分类讨论确定和解得单调性小问1详解】当时,,(x>0)则令,得,得,得,所以的单调递减区间为;单调递增区间为.所以的极小值为f(2)=,无极大值.【小问2详解】令则当时,在上单调递减.当时,,得,,得;,得在上单调递减,在上单调递增,综上所述,当时,在上单调递减.当时,在上单调递减,在上单调递增.20、(1)(2)【解析】(1)先求得椭圆的,代入公式即可求得椭圆的方程;(2)以设而不求的方法得到两根和,再由条件,得到四边形为平行四边形,并以向量方式进行等价转化,再与恒为定值进行联系,即可求得的值.【小问1详解】由条件可设椭圆:,因为抛物线:的焦点为,所以,解得因为椭圆离心率为,所以,则,故椭圆的方程为【小问2详解】设直线:,,,把直线的方程代入椭圆的方程,可得,所以,因为,,所以四边形为平行四边形,得,即,得由在椭圆上可得,,即因为,又所以,所以将代入得,所以,即.【点睛】数形结合是数学解题中常用的思想方法,数形结合的思想可以使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质;另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷。21、(1)2(2)【解析】(1)根据题意表示出的面积,即可求得结果;(2)分类讨论直线斜率情况,然后根据是等边三角形,得到,联立直线和椭圆方程,用点的坐标表示上述关系式,化简即可得答案.【小问1详解】因为,所以,又因为,所以,,所以,则椭圆的短轴长为2.【小问2详解】若为等边三角形,应有,即.当直线的斜率不存在时,直线的方程为,且,此时若为等边三角形,则点应为长轴顶点,且,即.当直线的斜率为0时,直线的方程为,且,此时若为等边二角形,则点应为短轴顶点,此时,不为等边三角形.当直线的斜率存在且不为0时,设其方程为,则直线的方程为.由得,同理.因为,所以,解得.因为,所以,则,即.综上,的取值范围是.22、(1)(2)过定点,定点为【解析】(1)根据离心率及顶点坐标求出即可得椭圆方程;(2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小学一年级20以内口算练习题
- 水电安装合同范本6篇
- 小学数学一年级下册20以内口算达标练习
- 小学数学小数乘除法计算题综合训练苏教版五年级
- 公司商业工作计划书6篇
- 《战略思考选对方向》课件
- 公路工程施工总结报告标准
- 高考新课标语文模拟试卷系列之68
- 《求真务实开拓创新》课件
- 《康师傅促销评估》课件
- GA 1802.2-2022生物安全领域反恐怖防范要求第2部分:病原微生物菌(毒)种保藏中心
- 企业EHS风险管理基础智慧树知到答案章节测试2023年华东理工大学
- 健身俱乐部入场须知
- 井下机电安装安全教育培训试题及答案
- TZJXDC 002-2022 电动摩托车和电动轻便摩托车用阀控式铅酸蓄电池
- GB/T 4744-2013纺织品防水性能的检测和评价静水压法
- GB/T 337.1-2002工业硝酸浓硝酸
- 《解放战争》(共48张PPT)
- 放射工作人员法律法规及防护知识培训考核试题附答案
- 劳动仲裁追加申请申请书(标准版)
- 西方法律思想史 课件
评论
0/150
提交评论