版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省孝义市)2025届高一数学第一学期期末达标检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的值域为()A. B.C. D.2.若都是锐角,且,,则的值是A. B.C. D.3.已知函数f(x)=a+log2(x2+a)(a>0)的最小值为8,则实数a的取值属于以下哪个范围()A.(5,6) B.(7,8)C.(8,9) D.(9,10)4.设函数f(x)=若,则实数的取值范围是()A.B.C.D.5.在试验“甲射击三次,观察中靶的情况”中,事件A表示随机事件“至少中靶1次”,事件B表示随机事件“正好中靶2次”,事件C表示随机事件“至多中靶2次”,事件D表示随机事件“全部脱靶”,则()A.A与C是互斥事件 B.B与C是互斥事件C.A与D是对立事件 D.B与D是对立事件6.我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水.天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸.若盆中积水深九寸,则平地降雨量是(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸;③台体的体积公式).A.2寸 B.3寸C.4寸 D.5寸7.若函数f(x)=Asin(ωx+φ)(其中A>0,ω>0,|φ|)的部分图象如图所示,将函数f(x)的图象向左平移1个单位长度后,得到函数g(x)的图象,则g(x)=()A.2cosx B.2sinxC.2cosx D.2sinx8.已知向量,满足,,且与夹角为,则()A. B.C. D.9.已知定义域为的函数满足:,且,当时,,则等于()A B.C.2 D.410.下列函数中最小值为6的是()A. B.C D.二、填空题:本大题共6小题,每小题5分,共30分。11.某学校在校学生有2000人,为了增强学生的体质,学校举行了跑步和登山比赛,每人都参加且只参加其中一项比赛,高一、高二、高三年级参加跑步的人数分别为a,b,c,且,全校参加登山的人数占总人数的.为了了解学生对本次比赛的满意程度,按分层抽样的方法从中抽取一个容量为200的样本进行调查,则应从高三年级参加跑步的学生中抽取人数为______.12.已知函数,则当_______时,函数取得最小值为_________.13.在《九章算术》中,将四个面都为直角三角形的三棱锥称之为鳖臑(bienao).已知在鳖臑中,平面,,则该鳖臑的外接球与内切球的表面积之和为____14.已知(其中且为常数)有两个零点,则实数的取值范围是___________.15.已知,则______________16.已知,均为锐角,,,则的值为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知集合且和集合(Ⅰ)求;(Ⅱ)若全集,集合,且,求a的取值范围18.已知定义在R上的函数满足:①对任意实数x,y,都有;②对任意(1)求;(2)判断并证明函数的奇偶性;(3)若,直接写出的所有零点(不需要证明)19.已知函数.(1)若函数在上至少有一个零点,求的取值范围;(2)若函数在上的最大值为3,求的值.20.某种放射性元素的原子数随时间的变化规律是,其中是正的常数,为自然对数的底数.(1)判断函数是增函数还是减函数;(2)把表示成原子数的函数.21.已知函数.(1)判断函数在R上的单调性,并用单调性的定义证明;(2)判断函数的奇偶性,并证明;(3)若恒成立,求实数k的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】根据分段函数的解析式,结合基本初等函数的单调,分别求得两段上函数的值域,进而求得函数的值域.【详解】当时,单调递减,此时函数的值域为;当时,在上单调递增,在上单调递减,此时函数的最大值为,最小值为,此时值域为,综上可得,函数值域为.故选:D.2、A【解析】由已知得,,故选A.考点:两角和的正弦公式3、A【解析】根复合函数的单调性,得到函数f(x)的单调性,求解函数的最小值f(x)min=8,构造新函数g(a)=a+log2a-8,利用零点的存在定理,即可求解.【详解】由题意,根复合函数的单调性,可得函数f(x)在[0,+∞)上是增函数,在(-∞,0)上递减,所以函数f(x)的最小值f(x)min=f(0)=a+log2a=8,令g(a)=a+log2a-8,a>0,则g(5)=log25-3<0,g(6)=log26-2>0,又g(a)在(0,+∞)上是增函数,所以实数a所在的区间为(5,6)【点睛】本题主要考查了函数的单调性的应用,以及零点的存在定理的应用,其中解答中根据复合函数的单调性,求得函数的最小值,构造新函数,利用零点的存在定理求解是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.4、C【解析】由于的范围不确定,故应分和两种情况求解.【详解】当时,,由得,所以,可得:,当时,,由得,所以,即,即,综上可知:或.故选:C【点睛】本题主要考查了分段函数,解不等式的关键是对的范围讨论,分情况解,属于中档题.5、C【解析】根据互斥事件、对立事件的定义即可求解.【详解】解:因为A与C,B与C可能同时发生,故选项A、B不正确;B与D不可能同时发生,但B与D不是事件的所有结果,故选项D不正确;A与D不可能同时发生,且A与D为事件的所有结果,故选项C正确故选:C.6、B【解析】根据题意可得平地降雨量,故选B.考点:1.实际应用问题;2.圆台的体积.7、A【解析】观察函数图像,求得,再结合函数图像的平移变换即可得解.详解】解:由图可知,,即,又,所以,即,又由图可知,所以,又,即即,将函数f(x)的图象向左平移1个单位长度后,得到函数g(x)的图象,则,故选:A.【点睛】本题考查了利用函数图像求解析式,重点考查了函数图像的平移变换,属基础题.8、D【解析】根据向量的运算性质展开可得,再代入向量的数量积公式即可得解.【详解】根据向量运算性质,,故选:D9、A【解析】根据函数的周期性以及奇偶性,结合已知函数解析式,代值计算即可.【详解】因为函数满足:,且,故是上周期为的偶函数,故,又当时,,则,故.故选:A.10、B【解析】利用基本不等式逐项分析即得.【详解】对于A,当时,,故A错误;对于B,因为,所以,当且仅当,即时取等号,故B正确;对于C,因为,所以,当且仅当,即,等号不能成立,故C错误;对于D,当时,,故D错误.故选:B.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由题意求得样本中抽取的高三的人数为人进而求得样本中高三年级参加登山的人,即可求解.【详解】由题意,高一、高二、高三年级参加跑步的人数分别为a,b,c,且,所以样本中抽取的高三的人数为人,又因为全校参加登山的人数占总人数的,所以样本中高三年级参加登山的人数为,所以样本中高三年级参加跑步的人数为人.故答案为:.12、①.##②.【解析】根据求出的范围,根据余弦函数的图像性质即可求其最小值.【详解】∵,∴,∴当,即时,取得最小值为,∴当时,最小值为.故答案为:;-3.13、【解析】M﹣ABC四个面都为直角三角形,MA⊥平面ABC,MA=AB=BC=2,∴三角形的AC=2,从而可得MC=2,那么ABC内接球的半径r:可得(﹣r)2=r2+(2﹣)2解得:r=2-∵△ABC时等腰直角三角形,∴外接圆半径为AC=外接球的球心到平面ABC的距离为=1可得外接球的半径R=故得:外接球表面积为.由已知,设内切球半径为,,,内切球表面积为,外接球与内切球的表面积之和为故答案为:.点睛:本题考查了球与几何体的问题,一般外接球需要求球心和半径,首先应确定球心的位置,借助于外接球的性质,球心到各顶点距离相等,这样可先确定几何体中部分点组成的多边形的外接圆的圆心,过圆心且垂直于多边形所在平面的直线上任一点到多边形的顶点的距离相等,然后同样的方法找到另一个多边形的各顶点距离相等的直线,这样两条直线的交点,就是其外接球的球心.14、【解析】设,可转化为有两个正解,进而可得参数范围.【详解】设,由有两个零点,即方程有两个正解,所以,解得,即,故答案为:.15、100【解析】分析得出得解.【详解】∴故答案为:100【点睛】由函数解析式得到是定值是解题关键.16、【解析】直接利用两角的和的正切关系式,即可求出结果【详解】已知,均锐角,,,则,所以:,故故答案为【点睛】本题主要考查了三角函数关系式的恒等变换,以及两角和的正切关系式的应用,其中解答中熟记两角和的正切的公式,准确运算是解答的关键,主要考查学生的运算能力和转化能力,属于基础题型三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ).【解析】Ⅰ由函数的定义域及值域的求法得,,可求Ⅱ先求解C,再由集合的补集的运算及集合间的包含关系得,解得【详解】Ⅰ由,,得,即,解不等式,得,即,所以,Ⅱ解不等式得:,即,又,又,所以,解得:,【点睛】本题考查了函数的定义域及值域的求法,考查了集合的交集、补集的运算及集合间的包含关系,属于简单题18、(1)(2)为偶函数,证明见解析(3)【解析】(1)令,化简可求出,(2)令,则,化简后结合函数奇偶性的定义判断即可,(3)利用赋值求解即可【小问1详解】令,则,,得或,因对任意,所以【小问2详解】为偶函数证明:令,则,得,所以为偶函数【小问3详解】令,则,因为,所以,当时,,当时,,当时,,当时,,……,所以即当时,,所以函数的零点为19、(1);(2)或.【解析】(1)由函数在至少有一个零点,方程至少有一个实数根,,解出即可;(2)通过对区间端点与对称轴顶点的横坐标的大小比较,再利用二次函数的单调性即可得出函数在上的最大值,令其等于可得结果.试题解析:(1)由.(2)化简得,当,即时,;当,即时,,,(舍);当,即时,,综上,或.20、(1)减函数;(2)(其中).【解析】(1)即得是关于的减函数;(2)利用指数式与对数式的互化,可以把t表示为原子数N的函数试题解析:(1)由已知可得因为是正常数,,所以,即,又是正常数,所以是关于的减函数(2)因为,所以,所以,即(其中).点睛:本题利用指数函数的单调性即可容易得出函数的单调性,利用指数与对数的互化可得出函数的表达式.21、(1)在R上的单调递增,证明见解析;(2)是奇函数,证明
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年度版权许可使用合同标的音乐作品与使用范围3篇
- 2024年度人工智能研发劳务分包合同3篇
- 2024年度货运代理合同:国际物流运输服务详细条款3篇
- 脚手架工程劳务合同
- 事业单位用工合同范本
- 雇佣劳动合同范本
- 劳务解约合同
- 房产抵押合同的标准版本
- 消杀服务合同协议书范本版
- 卫浴洁具供货合同
- 初中语文新课程标准与解读课件
- 外部压力与心理的处理
- 手电筒项目商业计划书
- 初中道德与法治课堂议题式教学探究
- 110kv各类型变压器的计算单
- CRH380B型高寒动车组空调系统
- 空调维护保养报告范本
- “班会主题课件-如何提升自我修养”
- 施工应急管理制度
- 火电竣工资料要求内容
- 新编实用英语(第四版)视听说基础教程Shehaslonghair
评论
0/150
提交评论