新疆巴州三中2025届数学高二上期末达标检测试题含解析_第1页
新疆巴州三中2025届数学高二上期末达标检测试题含解析_第2页
新疆巴州三中2025届数学高二上期末达标检测试题含解析_第3页
新疆巴州三中2025届数学高二上期末达标检测试题含解析_第4页
新疆巴州三中2025届数学高二上期末达标检测试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

新疆巴州三中2025届数学高二上期末达标检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知直线与圆交于A,B两点,O为原点,且,则实数m等于()A. B.C. D.2.如图,在长方体中,是线段上一点,且,若,则()A. B.C. D.3.直线经过两点,那么其斜率为()A. B.C. D.4.圆与圆的位置关系是()A.相离 B.内含C.相切 D.相交5.已知是定义在上的奇函数,对任意两个不相等的正数、都有,记,,,则()A. B.C. D.6.已知实数,满足约束条件则的最大值为()A.10 B.8C.4 D.207.若,则n的值为()A.7 B.8C.9 D.108.在如图所示的茎叶图中,若甲组数据的众数为16,则乙组数据的平均数为()A.12 B.10C.8 D.69.抛物线有如下光学性质:由其焦点射出的光线经抛物线反射后,沿平行于抛物线对称轴的方向射出;反之,平行于抛物线对称轴的入射光线经抛物线反射后必过抛物线的焦点.已知抛物线,O为坐标原点,一条平行于x轴的光线从点射入,经过C上的点A反射后,再经C上另一点B反射后,沿直线射出,经过点N.下列说法正确的是()A.若,则 B.若,则平分C.若,则 D.若,延长AO交直线于点D,则D,B,N三点共线10.若且,则下列选项中正确的是()A B.C. D.11.已知向量,,且,则实数等于()A1 B.2C. D.12.直线分别与轴,轴交于A,B两点,点在圆上,则面积的取值范围是()A B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.不透明袋中装有完全相同,标号分别为1,2,3,…,8的八张卡片.从中随机取出3张.设X为这3张卡片的标号相邻的组数(例如:若取出卡片的标号为3,4,5,则有两组相邻的标号3、4和4、5,此时X的值是2).则随机变量X的数学期望______14.若函数在(0,+∞)内有且只有一个零点,则a的值为_____15.若抛物线上一点到其准线的距离为4,则抛物线的标准方程为___________.16.已知,,且,则的最小值为___________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)自我国爆发新冠肺炎疫情以来,各地医疗单位都加紧了医疗用品的生产.某医疗器械厂统计了口罩生产车间每名工人的生产速度,并将所得数据分成五组并绘制出如图所示的频率分布直方图.已知前四组的频率成等差数列,第五组与第二组的频率相等(1)估计口罩生产车间工人生产速度的中位数(结果写成分数的形式);(2)为了解该车间工人的生产速度是否与他们的工作经验有关,现从车间所有工人中随机抽样调查了5名工人的生产速度以及他们的工龄(参加工作的年限),数据如下表:工龄x(单位:年)4681012生产速度y(单位:件/小时)4257626267根据上述数据求每名工人的生产速度y关于他的工龄x的回归方程,并据此估计该车间某位有16年工龄的工人的生产速度附:回归方程中斜率和截距的最小二乘估计公式为:,18.(12分)已知:在四棱锥中,底面为正方形,侧棱平面,点为中点,.(1)求证:平面平面;(2)求直线与平面所成角大小;(3)求点到平面的距离.19.(12分)已知椭圆点(1)若椭圆的左焦点为,上顶点为,求点到直线的距离;(2)若点是椭圆的弦的中点,求直线的方程20.(12分)在△中,角A,B,C的对边分别为a,b,c,已知,,.(1)求的大小及△的面积;(2)求的值.21.(12分)已知圆内有一点,过点P作直线l交圆C于A,B两点.(1)当P为弦的中点时,求直线l的方程;(2)若直线l与直线平行,求弦的长.22.(10分)设函数,且存在两个极值点、,其中.(1)求实数的取值范围;(2)若恒成立,求最小值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据给定条件求出,再求出圆O到直线l的距离即可计算作答.【详解】圆的圆心O,半径,因,则,而,则,即是正三角形,点O到直线l的距离,因此,,解得,所以实数m等于.故选:A2、A【解析】将利用、、表示,再利用空间向量的加法可得出关于、、的表达式,进而可求得的值.【详解】连接、,因,因为是线段上一点,且,则,因此,因此,.故选:A.3、B【解析】由两点的斜率公式可得答案.【详解】直线经过两点,则故选:B4、D【解析】先由圆的方程得出两圆的圆心坐标和半径,求出两圆心间的距离与两半径之和与差比较可得答案.【详解】圆的圆心为,半径为圆的圆心为,半径为两圆心间的距离为由,所以两圆相交.故选:D5、A【解析】由题,可得是定义在上的偶函数,且在上单调递减,在上单调递增,根据函数的单调性,即可判断出的大小关系.【详解】设,由题,得,即,所以函数在上单调递减,因为是定义在R上的奇函数,所以是定义在上的偶函数,因此,,,即.故选:A【点睛】本题主要考查利用函数的单调性判断大小的问题,其中涉及到构造函数的运用.6、A【解析】根据约束条件作出可行域,再将目标函数表示的一簇直线画出向可行域平移即可求解.【详解】作出可行域,如图所示转化为,令则,作出直线并平移使它经过可行域点,经过时,,解得,所以此时取得最大值,即有最大值,即故选:A.7、D【解析】根据给定条件利用组合数的性质计算作答【详解】因为,则由组合数性质有,即,所以n的值为10.故选:D8、A【解析】根据众数的概念,求得的值,再根据平均数的计算公式,即可求解.【详解】由题意,甲组数据的众数为16,得,所以乙组数据的平均数为故选:A.9、D【解析】根据求出焦点为、点坐标,可得直线的方程与抛物线方程联立得点坐标,由两点间的距离公式求出可判断AC;时可得,.由可判断B;求出点坐标可判断D.【详解】如图,若,则,C的焦点为,因为,所以,直线的方程为,整理得,与抛物线方程联立得,解得或,所以,所以,选项A错误;时,因为,所以.又,,所以不平分,选项B不正确;若,则,C的焦点为,因为,所以,直线的方程为,所以,所以,选项C错误;若,则,C的焦点为,因为,所以,直线的方程为,所以,直线的方程为,延长交直线于点D,所以则,所以D,B,N三点共线,选项D正确;故选:D.10、C【解析】对于A,作商比较,对于B,利用基本不等式的推广式判断,对于C,利用在单位圆中,内接正边形的面积小于内接正边形的面积判断,对于D,利用放缩法判断【详解】,故错误;,故错误;在单位圆中,内接正边形的面积小于内接正边形的面积(必修三阅读材料割圆术),则,故正确;,故错误故选:C【点睛】关键点点睛:此题考查不等式的综合应用,考查基本不等式的推广式的应用,考查放缩法的应用,对于C项解题的关键是利用了在单位圆中,内接正边形的面积小于内接正边形的面积求解,考查数学转化思想,属于难题11、C【解析】利用空间向量垂直的坐标表示计算即可得解【详解】因向量,,且,则,解得,所以实数等于.故选:C12、A【解析】把求面积转化为求底边和底边上的高,高就是圆上点到直线的距离.【详解】与x,y轴的交点,分别为,,点在圆,即上,所以,圆心到直线距离为,所以面积的最小值为,最大值为.故选:A二、填空题:本题共4小题,每小题5分,共20分。13、##【解析】设为这3张卡片的标号相邻的组数,则的可能取值为0,1,2,利用列举法分别求出相应的概率,由此能求出随机变量的数学期望【详解】解:不透明袋中装有完全相同,标号分别为1,2,3,,8的八张卡片从中随机取出3张,共有种,设为这3张卡片的标号相邻的组数,则的可能取值为0,1,2,的情况有:,2,,,3,,,4,,,5,,,6,,,7,,共6个,,的情况有:取,另外一个数有5种取法;取,另外一个数有4种取法;取,另外一个数有4种取法;取,另外一个数有4种取法;取,另外一个数有4种取法;取,另外一个数有4种取法;取,另外一个数有5种取法的情况一共有:,,,随机变量的数学期望:故答案为:14、a=3【解析】对函数进行求导,分类讨论函数单调性,根据单调性结合已知可以求出a的值.【详解】∵函数在(0,+∞)内有且只有一个零点,∴f′(x)=2x(3x﹣a),x∈(0,+∞),①当a≤0时,f′(x)=2x(3x﹣a)>0,函数f(x)在(0,+∞)上单调递增,f(0)=1,f(x)在(0,+∞)上没有零点,舍去;②当a>0时,f′(x)=2x(3x﹣a)>0的解为x,∴f(x)在(0,)上递减,在(,+∞)递增,又f(x)只有一个零点,∴f()1=0,解得a=3故答案为:a=3【点睛】本题考查了利用导数研究已知函数的零点求参数取值问题,考查了分类讨论和数学运算能力.15、【解析】先由抛物线的方程求出准线的方程,然后根据点到准线的距离可求,进而可得抛物线的标准方程.【详解】抛物线的准线方程为,点到其准线的距离为,由题意可得,解得,故抛物线的标准方程为.故答案为:.16、25【解析】根据,,且,由,利用基本不等式求解.【详解】因为,,且,所以,当且仅当,即时,等号成立,所以的最小值为25,故答案为:25三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)80件/小时【解析】(1)先利用等差数列的通项公式和频率分布直方图各矩形的面积之和为1求出各组频率,再利用频率分布直方图求中位数;(2)先求出、,利用最小二乘法求出回归直线方程,再进行预测其生产速度.【小问1详解】解:设前4组的频率分别为,,,,公差为,由频率分布直方图,得,即,解得,则,,所以中位数为.【小问2详解】解:由题意,得,,由所给公式,得,,所以回归直线方程为,则当时,,即估计该车间某位有16年工龄的工人的生产速度为80件/小时.18、(1)证明见解析;(2);(3).【解析】(1)以AB所在的直线为x轴,以AD所在的直线为y轴,以AP所在的直线为z轴,建立如图所示的直角坐标系,求出平面PCD的法向量为,平面的法向量为,即得证;(2)设直线与平面所成角为,利用向量法求解;(3)利用向量法求点到平面的距离.【小问1详解】证明:PA平面ABCD,ABCD为正方形,以AB所在的直线为x轴,以AD所在的直线为y轴,以AP所在的直线为z轴,建立如图所示的直角坐标系.由已知可得A(0,0,0),B(1,0,0),C(1,1,0),D(0,1,0),P(0,0,1)M为PD的中点,,所以,,,所以,又PDAM,,平面PCDAM平面PCD.平面PCD的法向量为.设平面的法向量为,,令,则,..平面MAC平面PCD.【小问2详解】解:设直线与平面所成角为,由(1)可得:平面PCD的法向量为,,,即直线与平面所成角大小.【小问3详解】解:,设点到平面的距离为,.点到平面的距离为.19、(1)(2)【解析】(1)根据椭圆基本关系求得,,再利用截距式求得方程,进而求得点到直线的距离.(2)设,利用点差法求解即可.【详解】(1)椭圆的左焦点是,上顶点,方程为,即,点到直线的距离;(2)设,,,,又,,两式相减得:,,即直线的斜率为,直线的方程为:,即【点睛】本题主要考查了椭圆中的基本量运算以及点差法的运用,属于基础题.20、(1),△的面积为;(2).【解析】(1)应用余弦定理求的大小,由三角形面积公式求△的面积;(2)由(1)及正弦定理的边角关系可得,即可求目标式的值.【小问1详解】在△中,由余弦定理得:,又,则.所以△的面积为.【小问2详解】由(1)得:,由正弦定理得:,则,所以.21、(1)(2)【解析】(1)由题意,,求出直线l的斜率,利用点斜式即可求解;(2)由题意,利用点斜式求出直线l的方程,然后由点到直线的距离公式求出弦心距,最后根据弦长公式即可求解.小问1详解】解:由题意,圆心,P为弦的中点时,由圆的性质有,又,所以,所以直线l的方程为,即;【小问2详解】解:因为直线l与直线平行,所以,所以直线的方程为,即,因为圆心到直线的距离,又半径,所以由弦长公式得.22、(1)(2)【解析】(1)存在两个极值点,等价于其导函数有两个相异零点;(2)适当构

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论