




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省福州市闽侯第一中学2025届高二上数学期末调研模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若正三棱柱的所有棱长都相等,D是的中点,则直线AD与平面所成角的正弦值为A. B.C. D.2.在正项等比数列中,和为方程的两根,则等于()A.8 B.10C.16 D.323.如图,在正三棱柱中,若,则C到直线的距离为()A. B.C. D.4.用3,4,5,6,7,9这6个数组成没有重复数字的六位数,下列结论正确的有()A.在这样的六位数中,奇数共有480个B.在这样的六位数中,3、5、7、9相邻的共有120个C.在这样的六位数中,4,6不相邻的共有504个D.在这样六位数中,4个奇数从左到右按照从小到大排序的共有60个5.今天是星期四,经过天后是星期()A.三 B.四C.五 D.六6.为比较甲、乙两地某月时的气温状况,随机选取该月中的天,将这天中时的气温数据(单位:℃)制成如图所示的茎叶图(十位数字为茎,个位数字为叶).考虑以下结论:①甲地该月时的平均气温低于乙地该月时的平均气温;②甲地该月时的平均气温高于乙地该月时的平均气温;③甲地该月时的气温的标准差小于乙地该月时的气温的标准差;④甲地该月时的气温的标准差大于乙地该月时的气温的标准差.其中根据茎叶图能得到的统计结论的编号为()A.①③ B.①④C.②③ D.②④7.给出下列判断,其中正确的是()A.三点唯一确定一个平面B.一条直线和一个点唯一确定一个平面C.两条平行直线与同一条直线相交,三条直线在同一平面内D.空间两两相交的三条直线在同一平面内8.已知直线l1:y=x+2与l2:2ax+y﹣1=0垂直,则a=()A. B.C.﹣1 D.19.由小到大排列的一组数据:,其中每个数据都小于,另一组数据2、的中位数可以表示为()A. B.C. D.10.某社区医院为了了解社区老人与儿童每月患感冒的人数y(人)与月平均气温x(℃)之间的关系,随机统计了某4个月的患病(感冒)人数与当月平均气温,其数据如下表:月平均气温x(℃)171382月患病y(人)24334055由表中数据算出线性回归方程中的,气象部门预测下个月的平均气温约为9℃,据此估计该社区下个月老年人与儿童患病人数约为()A.38 B.40C.46 D.5811.用反证法证明“若a,b∈R,,则a,b不全为0”时,假设正确的是()A.a,b中只有一个为0 B.a,b至少一个不为0C.a,b至少有一个为0 D.a,b全为012.下列命题中正确的是()A.函数最小值为2.B.函数的最小值为2.C.函数的最小值为D.函数的最大值为二、填空题:本题共4小题,每小题5分,共20分。13.在梯形中,,,.将梯形绕所在的直线旋转一周而形成的曲面所围成的几何体的体积为______.14.已知双曲线,则圆的圆心C到双曲线渐近线的距离为______15.椭圆的长轴长为______16.圆锥的轴截面是边长为2的等边三角形,为底面中心,为的中点,动点在圆锥底面内(包括圆周).若,则点形成的轨迹的长度为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,四棱锥中,底面为梯形,底面,,,,.(1)求证:平面平面;(2)设为上一点,满足,若直线与平面所成的角为,求二面角的余弦值.18.(12分)设分别为椭圆的左右焦点,过的直线l与椭圆C相交于A,B两点,直线的倾斜角为60度,到直线l的距离为(1)求椭圆C的焦距;(2)如果,求椭圆C的方程19.(12分)已知函数在区间上有最大值和最小值(1)求实数、的值;(2)设,若不等式,在上恒成立,求实数的取值范围20.(12分)已知点F是抛物线和椭圆的公共焦点,是与的交点,.(1)求椭圆的方程;(2)直线与抛物线相切于点,与椭圆交于,,点关于轴的对称点为.求的最大值及相应的.21.(12分)在二项式展开式中,第3项和第4项的二项式系数比为.(1)求n的值及展开式中的常数项;(2)求展开式中系数最大的项是第几项.22.(10分)已知点,椭圆:的离心率为,是椭圆的右焦点,直线的斜率为,为坐标原点.设过点的动直线与相交于,两点(1)求椭圆的方程(2)是否存在直线,使得的面积为?若存在,求出的方程;若不存在,请说明理由
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】建立空间直角坐标系,得到相关点的坐标后求出直线的方向向量和平面的法向量,借助向量的运算求出线面角的正弦值【详解】取AC的中点为坐标原点,建立如图所示的空间直角坐标系设三棱柱的棱长为2,则,∴设为平面的一个法向量,由故令,得设直线AD与平面所成角为,则,所以直线AD与平面所成角的正弦值为故选A【点睛】空间向量的引入为解决立体几何问题提供了较好的方法,解题时首先要建立适当的坐标系,得到相关点的坐标后借助向量的运算,将空间图形的位置关系或数量关系转化为向量的运算处理.在解决空间角的问题时,首先求出向量夹角的余弦值,然后再转化为所求的空间角.解题时要注意向量的夹角和空间角之间的联系和区别,避免出现错误2、C【解析】根据和为方程两根,得到,然后再利用等比数列的性质求解.【详解】因为和为方程的两根,所以,又因为数列是等比数列,所以,故选:C3、D【解析】取AC的中点O,建立如图所示的空间直角坐标系,根据点到线距离的向量求法和投影的定义计算即可.【详解】由题意知,,取AC的中点O,则,建立如图所示的空间直角坐标系,则,所以,所以在上的投影的长度为,故点C到直线距离为:.故选:D4、A【解析】A选项,特殊位置优先考虑求出这样的六位数中,奇数个数;B选项,相邻问题捆绑法求解;C选项,不相邻问题插空法求解;D选项,定序问题使用倍缩法求解.【详解】用3,4,5,6,7,9这6个数组成没有重复数字的六位数,个位为3,5,7,9中的一位,有种,其余五个数位上的数字进行全排列,有种,综上:在这样的六位数中,奇数共有个,A正确;在这样的六位数中,3、5、7、9相邻,将3、5、7、9捆绑,有种排法,再与4,6进行全排列,故共有个,B错误;在这样的六位数中,4,6不相邻,先将3、5、7、9进行全排列,再从五个位置中任选两个将4,6排列,综上共有个,C错误;在这样的六位数中,4个奇数从左到右按照从小到大排序的共有个,D错误.故选:A5、C【解析】求出二项式定理的通项公式,得到除以7余数是1,然后利用周期性进行计算即可【详解】解:一个星期的周期是7,则,即除以7余数是1,即今天是星期四,经过天后是星期五,故选:6、B【解析】根据茎叶图数据求出平均数及标准差即可【详解】由茎叶图知甲地该月时的平均气温为,标准差为由茎叶图知乙地该月时的平均气温为,标准差为则甲地该月14时的平均气温低于乙地该月14时的平均气温,故①正确,乙平均气温的标准差小于甲的标准差,故④正确,故正确的是①④,故选:B7、C【解析】根据确定平面的条件可对每一个选项进行判断.【详解】对A,如果三点在同一条直线上,则不能确定一个平面,故A错误;对B,如果这个点在这条直线上,就不能确定一个平面,故B错误;对C,两条平行直线确定一个平面,一条直线与这两条平行直线都相交,则这条直线就在这两条平行直线确定的一个平面内,故这三条直线在同一平面内,C正确;对D,空间两两相交的三条直线可确定一个平面,也可确定三个平面,故D错误.故选:C8、A【解析】利用两直线垂直斜率关系,即可求解.【详解】直线l1:y=x+2与l2:2ax+y﹣1=0垂直,.故选:A【点睛】本题考查两直线垂直间的关系,属于基础题.9、C【解析】先根据题意对数据进行排列,然后由中位数的定义求解即可【详解】因为由小到大排列的一组数据:,其中每个数据都小于,所以另一组数据2、从小到大的排列为,所以这一组数的中位数为,故选:C10、B【解析】由表格数据求样本中心,根据线性回归方程过样本中心点,将点代入方程求参数,写出回归方程,进而估计下个月老年人与儿童患病人数.【详解】由表格得为,由回归方程中的,∴,解得,即,当时,.故选:B.11、D【解析】把要证的结论否定之后,即得所求的反设【详解】由于“a,b不全为0”的否定为:“a,b全为0”,所以假设正确的是a,b全为0.故选:D12、D【解析】根据基本不等式知识对选项逐一判断【详解】对于A,时为负值,故A错误对于B,,而无解,无法取等,故B错误对于,当且仅当即时等号成立,故,D正确,C错误故选:D二、填空题:本题共4小题,每小题5分,共20分。13、##【解析】画出几何体的直观图,利用已知条件,求解几何体的体积即可【详解】梯形ABCD:由题意可知空间几何体的直观图如图:旋转体是底面半径为1,高为2的圆柱,挖去一个相同底面高为1的圆锥,几何体的体积为:故答案为:14、2【解析】求出圆心和双曲线的渐近线方程,即得解.【详解】解:由题得圆的圆心为,双曲线的渐近线方程为,即.所以圆心到双曲线渐近线的距离为.故答案为:215、4【解析】把椭圆方程化成标准形式直接计算作答.【详解】椭圆方程化为:,令椭圆长半轴长为a,则,解得,所以椭圆的长轴长为4.故答案为:416、【解析】建立空间直角坐标系设,,,,于是,,因为,所以,从而,,此为点形成的轨迹方程,其在底面圆盘内的长度为三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】(1)由三角形的边角关系可证,再由底面,可得.即可证明底面,由面面垂直的判定定理得证.(2)以点为坐标原点,,,分别为,,轴建立空间坐标系,利用空间向量法求出二面角的余弦值.【详解】解析:(1)证明:由,,,,,所以,又,∴,∴,∴,因为底面,底面,∴.因为,底面,底面,底面,底面,所以面面.(2)由(1)可知为与平面所成的角,∴,∴,,由及,可得,,以点为坐标原点,,,分别为,,轴建立空间坐标系,则,,,,设平面的法向量为,则,,取,设平面的法向量为,则,,取,所以,所以二面角余弦值为.【点睛】本题考查面面垂直的判定,线面垂直的性质,利用空间向量法求二面角的余弦值,属于中档题.18、(1)(2)【解析】(1)求得直线的方程,利用点到直线的距离列方程,由此求得,进而求得焦距.(2)联立直线的方程和椭圆方程,化简写出根与系数关系,结合来求得,从而求得椭圆的方程.【小问1详解】依题意,直线的方程为,到的距离为,所以焦距.【小问2详解】由,消去并化简得,设,则,,,,,所以,,,,,,,,,所以,所以椭圆的方程为.19、(1),;(2).【解析】(1)分析函数在区间上的单调性,结合已知条件可得出关于实数、的方程组,即可解得实数、的值;(2)由(1)可得,利用参变量分离法可得出,利用单调性求出函数在上的最小值,即可得出实数的取值范围.【小问1详解】解:的对称轴是,又,所以,函数在上单调递减,在上单调递增,当时,取最小值,当时,取最大值,即,解得.【小问2详解】解:由(1)知:,所以,,又,,令,则在上是增函数.所以,,要使在上恒成立,只需,因此,实数的取值范围为20、(1);(2),.【解析】(1)根据题意可得,然后根据,,计算可得,最后可得结果.(2)假设直线的方程为,根据与抛物线相切,可得,然后与椭圆联立,计算,然后计算点到的距离,计算,利用函数性质可得结果.【详解】(1)由题意知:,.,得:,所以.所以的方程为.(2)设直线的方程为,则由,得得:所以直线的方程为.由,得得.又,所以点到的距离为..令,则,.此时,即【点睛】本题考查直线与圆锥曲线的综合以及三角形面积问题,本题着重考查对问题分析能力以及计算能力,属难题.21、(1),常数项为(2)5【解析】(1)求出二项式的通项公式,求出第3项和第4项的二项式系数,再利用已知条件列方程求出的值,从而可求出常数项,(2)设展开式中系数最大的项是第项,则,从而可求出结果【小问1详解】二项式展开式的通项公式为,因为第3项和第4项的二项式系数比为,所以,化简得,解得,所以,令,得,所以常数项为【小问2详解】设展开式
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年教育信息化基础设施建设中的智慧校园智能教学拓展实施策略研究报告
- 2025年中国铜铝过渡板行业市场发展现状及投资战略咨询报告
- 2025年中国射频同轴电缆行业发展监测及投资战略研究报告
- 中国生态养猪场行业市场发展现状及前景趋势与投资分析研究报告(2024-2030)
- 2022-2027年中国蜜枣行业市场调研及未来发展趋势预测报告
- 2025年中国微晶玻璃行业市场全景监测及投资策略研究报告
- 2025年中国皮织绳匙扣行业市场发展前景及发展趋势与投资战略研究报告
- 2021-2026年中国载重卡车行业发展监测及投资战略规划研究报告
- 辊道抛丸清理机项目投资可行性研究分析报告(2024-2030版)
- 2024年中国石料破碎行业市场调查报告
- 2025年高考化学湖北卷试题真题解读及复习备考指导(精校打印)
- 2025年连云港市中考数学试题卷(含答案)
- 2024初级会计职称考试《经济法基础》真题和答案
- CJ/T 358-2019非开挖工程用聚乙烯管
- 2025年辽宁省沈阳市于洪区中考数学二模试卷
- 辐射安全与防护培训考试题库及答案
- 理论联系实际阐述文化在社会发展中具有什么样的作用?参考答案四
- 四川雅安天立学校2025年七下数学期末预测试题含解析
- 电子元器件品质协议书
- 2025年度汽车维修企业员工保密及竞业禁止合同范本
- 国网35条严重违章及其释义解读课件
评论
0/150
提交评论