2025届重庆市育仁中学高一数学第一学期期末经典试题含解析_第1页
2025届重庆市育仁中学高一数学第一学期期末经典试题含解析_第2页
2025届重庆市育仁中学高一数学第一学期期末经典试题含解析_第3页
2025届重庆市育仁中学高一数学第一学期期末经典试题含解析_第4页
2025届重庆市育仁中学高一数学第一学期期末经典试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届重庆市育仁中学高一数学第一学期期末经典试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知两条绳子提起一个物体处于平衡状态.若这两条绳子互相垂直,其中一条绳子的拉力为50,且与两绳拉力的合力的夹角为30°,则另一条绳子的拉力为()A.100 B.C.50 D.2.已知实数,,,则,,的大小关系为()A. B.C. D.3.在新冠肺炎疫情初始阶段,可以用指数模型::I(t)=ert(其中r为指数增长率)描述累计感染病例数I(t)随时间t(单位:天)的变化规律.有学者基于已有数据估计出累计感染病例数增加1倍需要的时间约为2天,据此,在新冠肺炎疫情初始阶段,指数增长率r的值约为()(参考数值:ln20.69)A.0.345 B.0.23C.0.69 D.0.8314.如图,的斜二测直观图为等腰,其中,则原的面积为()A.2 B.4C. D.5.下列说法中,正确的是()A.若,则B.函数与函数是同一个函数C.设点是角终边上的一点,则D.幂函数的图象过点,则6.已知函数,若,则实数的取值范围是A. B.C. D.7.设,,则的值为()A. B.C.1 D.e8.“”是“幂函数在上单调递增”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件9.已知定义域为R的函数在单调递增,且为偶函数,若,则不等式的解集为()A. B.C. D.10.将函数()的图象向右平移个单位长度后,得到函数的图象,若为偶函数,则()A.5 B.C.4 D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数的最大值为3,最小值为1,则函数的值域为_________.12.已知函数.(1)当函数取得最大值时,求自变量x的集合;(2)完成下表,并在平面直角坐标系内作出函数在的图象.x0y13.已知点,直线与线段相交,则实数的取值范围是____;14.函数,的图象恒过定点P,则P点的坐标是_____.15.圆的半径是6cm,则圆心角为30°的扇形面积是_________16.边长为2的正方形ABCD沿对角线BD折成直二面角,则折叠后AC的长为________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在三棱锥中,和是边长为等边三角形,,分别是的中点.(1)求证:平面;(2)求证:平面;(3)求三棱锥的体积.18.已知集合,集合.(1)求.(2)求,求的取值范围.19.定义在上的函数满足对于任意实数,都有,且当时,,(1)判断的奇偶性并证明;(2)判断的单调性,并求当时,的最大值及最小值;(3)解关于的不等式.20.证明:(1);(2)21.设函数(1)求函数的最小正周期和单调递增区间;(2)求函数在上的最大值与最小值及相应的x的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】利用向量的平行四边形法则求解即可【详解】如图,两条绳子提起一个物体处于平衡状态,不妨设,根据向量的平行四边形法则,故选:D2、A【解析】利用指数函数和对数函数的单调性比较a三个数与0、1的大小关系,由此可得出a、b、c大小关系.【详解】解析:由题,,,即有.故选:A.3、A【解析】由题设可知第天感染病例数为,则第天的感染感染病例数为,由感染病例数增加1倍需要的时间约为2天,则,解出即可得出答案.【详解】由题设可知第天感染病例数为,则第天的感染感染病例数为由感染病例数增加1倍需要的时间约为2天,则所以,即所以故选:A4、D【解析】首先算出直观图面积,再根据平面图形与直观图面积比为求解即可.【详解】因为等腰是一平面图形的直观图,直角边,所以直角三角形的面积是.又因为平面图形与直观图面积比为,所以原平面图形的面积是.故选:D5、D【解析】A选项,举出反例;B选项,两函数定义域不同;C选项,利用三角函数定义求解;D选项,待定系数法求出解析式,从而得到答案.【详解】A选项,当时,满足,而,故A错误;B选项,定义域为R,定义域为,两者不是同一个函数,B错误;C选项,,C错误;D选项,设,将代入得:,解得:,所以,D正确.故选:D6、D【解析】画出图象可得函数在实数集R上单调递增,故由,可得,即,解得或故实数的取值范围是.选D7、A【解析】根据所给分段函数解析式计算可得;【详解】解:因为,,所以,所以故选:A8、A【解析】由幂函数的概念,即可求出或,再根据或均满足在上单调递增以及充分条件、必要条件的概念,即可得到结果.【详解】若为幂函数,则,解得或,又或都满足在上单调递增故“”是“幂函数在上单调递增”的充分不必要条件故选:A.9、D【解析】根据题意,由函数为偶函数分析可得函数的图象关于直线对称,结合函数的单调性以及特殊值分析可得,解可得的取值范围,即可得答案【详解】解:根据题意,函数为偶函数,则函数的图象关于直线对称,又由函数在,单调递增且f(3),则,解可得:,即不等式的解集为;故选:D10、C【解析】先由函数图象平移规律可得,再由为偶函数,可得(),则(),再由可得出的值.【详解】由题意可知,因为为偶函数,所以(),则(),因为,所以.故选:C.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据三角函数性质,列方程求出,得到,进而得到,利用换元法,即可求出的值域【详解】根据三角函数性质,的最大值为,最小值为,解得,则函数,则函数,,令,则,令,由得,,所以,的值域为故答案为:【点睛】关键点睛:解题关键在于求出后,利用换元法得出,,进而求出的范围,即可求出所求函数的值域,难度属于中档题12、(1)(2)答案见解析【解析】(1)由三角恒等变换求出解析式,再求得最大值时的x的集合,(2)由五点法作图,列出表格,并画图即可.【小问1详解】令,函数取得最大值,解得,所以此时x的集合为.【小问2详解】表格如下:x0y11作图如下,13、【解析】由直线,即,此时直线恒过点,则直线的斜率,直线的斜率,若直线与线段相交,则,即,所以实数的取值范围是点睛:本题考查了两条直线的位置关系的应用,其中解答中把直线与线段有交点转化为直线间的斜率之间的关系是解答的关键,同时要熟记直线方程的各种形式和直线过定点的判定,此类问题解答中把直线与线段有交点转化为定点与线段端点斜率之间关系是常见的一种解题方法,着重考查了学生分析问题和解答问题的能力14、【解析】令,解得,且恒成立,所以函数的图象恒过定点;故填.15、3π【解析】根据扇形的面积公式即可计算.【详解】,.故答案为:3π.16、2【解析】取的中点,连接,,则,则为二面角的平面角点睛:取的中点,连接,,根据正方形可知,,则为二面角的平面角,在三角形中求出的长.本题主要是在折叠问题中考查了两点间的距离.折叠问题要注意分清在折叠前后哪些量发生了变化,哪里量没变三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)见解析(3).【解析】由三角形中位线定理,得出,结合线面平行的判定定理,可得平面PAC;等腰和等腰中,证出,而,由勾股定理的逆定理,得,结合,可得平面ABC;由易知PO是三棱锥的高,算出等腰的面积,再结合锥体体积公式,可得三棱锥的体积【详解】,D分别为AB,PB的中点,又平面PAC,平面PAC平面如图,连接OC,O为AB中点,,,且同理,,又,,得、平面ABC,,平面平面ABC,D为PB的中点,结合,得棱锥的高为,体积为【点睛】本题给出特殊三棱锥,求证线面平行、线面垂直并求锥体体积,考查了线面平行、线面垂直的判定与性质和锥体体积公式等知识,属于中档题18、(1)(2)【解析】(1)由不等式,求得,即可求解;(2)由,得到,列出不等式组,即可求解.【小问1详解】解:由,即,可得,可得集合.【小问2详解】解:因为,且集合,又因为,即,当时,即,可得,此时满足;当时,则满足,解得,综上可得,,即实数的取值范围.19、(1)奇函数,证明见解析;(2)在上是减函数.最大值为6,最小值为-6;(3)答案不唯一,见解析【解析】(1)令,求出,再令,由奇偶性的定义,即可判断;(2)任取,则.由已知得,再由奇函数的定义和已知即可判断单调性,由,得到,,再由单调性即可得到最值;(3)将原不等式转化为,再由单调性,即得,即,再对b讨论,分,,,,共5种情况分别求出它们的解集即可.【详解】(1)令,则,即有,再令,得,则,故为奇函数;(2)任取,则.由已知得,则,∴,∴在上是减函数由于,则,,.由在上是减函数,得到当时,的最大值为,最小值为;(3)不等式,即为.即,即有,由于在上是减函数,则,即为,即有,当时,得解集为;当时,即有,①时,,此时解集为,②当时,,此时解集为,当时,即有,①当时,,此时解集为,②当时,,此时解集为【点睛】本题考查抽象函数的基本性质和不等式问题,常用赋值法探索抽象函数的性质,本题第三小问利用函数性质将不等式转化为含参的一元二次不等式的求解问题,着重考查分类讨论思想,属难题.20、(1)证明见解析(2)证明见解析【解析】(1)利用三角函数的和差公式,分别将两边化简后即可;(2)利用和2倍角公式构造出齐次式,再同时除以即可证明.【小问1详解】左边===右边===左边=右边,所以原等式得证.【小问2详解】

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论